Abstract
Genetics and molecular biology have shown the mechanisms that allow the genome to provide both the continuity and the variation from generation to generation within a phylogeny. Embryology and developmental biology show the mechanisms that turn the genome into an organism. Mutations, the basis for evolutionary change, cannot in themselves ensure concordance between their products and the products of unchanged genes. Thus, mutations will not necessarily produce a viable organism. On the other hand, ontogenetic buffer mechanisms normally maintain concordance in the developing organism. In addition, ontogenetic buffer mechanisms can integrate discordant mutations into viable organisms that can then be perpetuated during evolution. The evolutionary role of one ontogenetic buffer mechanism, compensatory innervation, is well illustrated in the anopthalmic mutant mouse. In the anopthalmic mouse, a single gene mutation removes afferent axons of the dorsal lateral geniculate nucleus, and compensatory innervation by another population of axons ensures that the dorsal lateral geniculate remains integrated into the central nervous system. Within each organism's ontogeny is a hierarchy of sources of compensatory innervation, and this hierarchy will determine how any particular deafferentating mutation will be buffered. In this way, an ontogeny can channel the phylogeny of which it is a member.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barker D., Ip M. C. Sprouting and degeneration of mammalian motor axons in normal and de-afferentated skeletal muscle. Proc R Soc Lond B Biol Sci. 1966 Jan 18;163(993):538–554. doi: 10.1098/rspb.1966.0008. [DOI] [PubMed] [Google Scholar]
- Chakraborty R., Nei M. Dynamics of gene differentiation between incompletely isolated populations of unequal sizes. Theor Popul Biol. 1974 Jun;5(3):460–469. doi: 10.1016/0040-5809(74)90064-1. [DOI] [PubMed] [Google Scholar]
- Chase H B. Studies on an Anophthalmic Strain of Mice. III. Results of Crosses with Other Strains. Genetics. 1942 May;27(3):339–348. doi: 10.1093/genetics/27.3.339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chase H B. Studies on an Anophthalmic Strain of Mice. IV. a Second Major Gene for Anophthalmia. Genetics. 1944 May;29(3):264–269. doi: 10.1093/genetics/29.3.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cullen M. J., Kaiserman-Abramof I. R. Cytological organization of the dorsal lateral geniculate nuclei in mutant anophthalmic and postnatally enucleated mice. J Neurocytol. 1976 Aug;5(4):407–424. doi: 10.1007/BF01181648. [DOI] [PubMed] [Google Scholar]
- Diamond J., Cooper E., Turner C., Macintyre L. Trophic regulation of nerve sprouting. Science. 1976 Jul 30;193(4251):371–377. doi: 10.1126/science.935873. [DOI] [PubMed] [Google Scholar]
- EDDS M. V., Jr Collateral nerve regeneration. Q Rev Biol. 1953 Sep;28(3):260–276. doi: 10.1086/399699. [DOI] [PubMed] [Google Scholar]
- Foster M. Mammalian pigment genetics. Adv Genet. 1965;13:311–339. [PubMed] [Google Scholar]
- Gould S. J., Lewontin R. C. The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci. 1979 Sep 21;205(1161):581–598. doi: 10.1098/rspb.1979.0086. [DOI] [PubMed] [Google Scholar]
- Guillery R. W. The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat. 1969;96(1):1–38. doi: 10.1007/BF00321474. [DOI] [PubMed] [Google Scholar]
- Jacob F. Evolution and tinkering. Science. 1977 Jun 10;196(4295):1161–1166. doi: 10.1126/science.860134. [DOI] [PubMed] [Google Scholar]
- Kaiserman-Abramof I. R., Graybiel A. M., Nauta W. J. The thalamic projection to cortical area 17 in a congenitally anophthalmic mouse strain. Neuroscience. 1980;5(1):41–52. doi: 10.1016/0306-4522(80)90069-x. [DOI] [PubMed] [Google Scholar]
- Kaiserman-Abramof I. R. Quantitative comparison of spines in layer V neurons of the striate cortex in anophthalmic mutant and normal mice. Brain Res. 1979 Dec 28;179(2):385–389. doi: 10.1016/0006-8993(79)90455-4. [DOI] [PubMed] [Google Scholar]
- Katz M. J., Lasek R. J. Evolution of the nervous system: role of ontogenetic mechanisms in the evolution of matching populations. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1349–1352. doi: 10.1073/pnas.75.3.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LIU C. N., CHAMBERS W. W. Intraspinal sprouting of dorsal root axons; development of new collaterals and preterminals following partial denervation of the spinal cord in the cat. AMA Arch Neurol Psychiatry. 1958 Jan;79(1):46–61. [PubMed] [Google Scholar]
- Landmesser L. T. Competitive interactions between developing cholinergic neurones. Prog Brain Res. 1979;49:373–384. doi: 10.1016/S0079-6123(08)64649-X. [DOI] [PubMed] [Google Scholar]
- Lieberman A. R., Webster K. E. Aspects of the synaptic organization of intrinsic neurons in the dorsal lateral geniculate nucleus. An ultrastructural study of the normal and of the experimentally deafferented nucleus in the rat. J Neurocytol. 1974 Dec;3(6):677–710. doi: 10.1007/BF01097191. [DOI] [PubMed] [Google Scholar]
- Lund R. D., Cunningham T. J., Lund J. S. Modified optic projections after unilateral eye removal in young rats. Brain Behav Evol. 1973;8(1):51–72. doi: 10.1159/000124347. [DOI] [PubMed] [Google Scholar]
- Lynch G., Gall C., Rose G., Cotman C. Changes in the distribution of the dentate gyrus associational system following unilateral or bilateral entorhinal lesions in the adult rat. Brain Res. 1976 Jun 25;110(1):57–71. doi: 10.1016/0006-8993(76)90208-0. [DOI] [PubMed] [Google Scholar]
- Lynch G., Stanfield B., Parks T., Cotman C. W. Evidence for selective post-lesion axonal growth in the dentate gyrus of the rat. Brain Res. 1974 Mar 29;69(1):1–11. doi: 10.1016/0006-8993(74)90365-5. [DOI] [PubMed] [Google Scholar]
- Mark R. F., Marotte L. R., Mart P. E. The mechanism of selective reinnervation of fish eye muscles. IV. Identification of repressed synapses. Brain Res. 1972 Nov 13;46:149–157. doi: 10.1016/0006-8993(72)90012-1. [DOI] [PubMed] [Google Scholar]
- Mark R. F. Matching muscles and motoneurones. A review of some experiments on motor nerve regeneration. Brain Res. 1969 Jul;14(2):245–254. doi: 10.1016/0006-8993(69)90108-5. [DOI] [PubMed] [Google Scholar]
- Pilar G., Landmesser L., Burstein L. Competition for survival among developing ciliary ganglion cells. J Neurophysiol. 1980 Jan;43(1):233–254. doi: 10.1152/jn.1980.43.1.233. [DOI] [PubMed] [Google Scholar]
- Pittman R., Oppenheim R. W. Cell death of motoneurons in the chick embryo spinal cord. IV. Evidence that a functional neuromuscular interaction is involved in the regulation of naturally occurring cell death and the stabilization of synapses. J Comp Neurol. 1979 Sep 15;187(2):425–446. doi: 10.1002/cne.901870210. [DOI] [PubMed] [Google Scholar]
- Rustioni A., Sotelo C. Some effects of chronic deafferentation on the ultrastructure of the nucleus gracilis of the cat. Brain Res. 1974 Jun 28;73(3):527–533. doi: 10.1016/0006-8993(74)90675-1. [DOI] [PubMed] [Google Scholar]
- Ryugo R., Ryugo D. K., Killackey H. P. Differential effect of enucleation on two populations of layer V pyramidal cells. Brain Res. 1975 May 9;88(3):554–559. doi: 10.1016/0006-8993(75)90670-8. [DOI] [PubMed] [Google Scholar]
- Schneider G. E. Early lesions of superior colliculus: factors affecting the formation of abnormal retinal projections. Brain Behav Evol. 1973;8(1):73–109. doi: 10.1159/000124348. [DOI] [PubMed] [Google Scholar]
- Silver J. Abnormal development of the suprachiasmatic nuclei of the hypothalamus in a strain of genetically anophthalmic mice. J Comp Neurol. 1977 Dec 15;176(4):589–606. doi: 10.1002/cne.901760409. [DOI] [PubMed] [Google Scholar]
- Silver J., Hughes A. F. The relationship between morphogenetic cell death and the development of congenital anophthalmia. J Comp Neurol. 1974 Oct 1;157(3):281–301. doi: 10.1002/cne.901570303. [DOI] [PubMed] [Google Scholar]
- Sligar C. M., Voneida T. J. Tectal efferents in the blind cave fish Astyanax hubbsi. J Comp Neurol. 1976 Jan 1;165(1):107–124. doi: 10.1002/cne.901650109. [DOI] [PubMed] [Google Scholar]
- Stanfield B., Cowan W. M. Evidence for a change in the retino-hypothalamic projection in the rat following early removal of one eye. Brain Res. 1976 Mar 5;104(1):129–136. doi: 10.1016/0006-8993(76)90652-1. [DOI] [PubMed] [Google Scholar]
- Valverde F. Apical dendritic spines of the visual cortex and light deprivation in the mouse. Exp Brain Res. 1967;3(4):337–352. doi: 10.1007/BF00237559. [DOI] [PubMed] [Google Scholar]
- Valverde F. Structural changes in the area striata of the mouse after enucleation. Exp Brain Res. 1968;5(4):274–292. doi: 10.1007/BF00235903. [DOI] [PubMed] [Google Scholar]
- Voneida T. J., Sligar C. M. A comparative neuroanatomic study of retinal projections in two fishes: Astyanax hubbsi (the blind cave fish), and Astyanax mexicanus. J Comp Neurol. 1976 Jan 1;165(1):89–105. doi: 10.1002/cne.901650108. [DOI] [PubMed] [Google Scholar]
- Wall P. D., Egger M. D. Formation of new connexions in adult rat brains after partial deafferentation. Nature. 1971 Aug 20;232(5312):542–545. doi: 10.1038/232542a0. [DOI] [PubMed] [Google Scholar]
