Abstract
A cloned cell line derived from mouse bone marrow and transformed by Abelson virus is shown to synthesize two different heavy chains, mu and gamma 2B, in vitro. This characteristic is stable because it persists upon subcloning. Although most of the immunoglobulin-synthesizing cells produce either mu or gamma 2B heavy chains, a few cells contain both heavy chains, suggesting immunoglobulin class switching. Karyotypes show a complement of 41 chromosomes. Two copies of chromosome 12, to which immunoglobulin heavy chain structural genes have been assigned, were found. No light chain was found in either the mu- or the gamma 2B-producing cells. However, fusion of the cell line with a myeloma that synthesizes neither heavy nor light chains caused expression of kappa light chain in the hybridoma synthesizing mu chain. No light chain could be detected in the hybridomas synthesizing gamma 2B heavy chain.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baltimore D., Rosenberg N., Witte O. N. Transformation of immature lymphoid cells by Abelson murine leukemia virus. Immunol Rev. 1979;48:3–22. doi: 10.1111/j.1600-065x.1979.tb00296.x. [DOI] [PubMed] [Google Scholar]
- Buckland R. A., Fletcher J. M., Chandley C. Characterization of the domestic horse (Equus caballus) karyotype using G- and C-banding techniques. Experientia. 1976 Sep 15;32(9):1146–1149. doi: 10.1007/BF01927593. [DOI] [PubMed] [Google Scholar]
- Burrows P. D., Kearney J. F., Lawton A. R., Cooper M. D. Pre-B cells: bone marrow persistence in anti-mu-suppressed mice, conversion to B lymphocytes, and recovery after destruction by cyclophosphamide. J Immunol. 1978 May;120(5):1526–1531. [PubMed] [Google Scholar]
- Burrows P., LeJeune M., Kearney J. F. Evidence that murine pre-B cells synthesise mu heavy chains but no light chains. Nature. 1979 Aug 30;280(5725):838–840. doi: 10.1038/280838a0. [DOI] [PubMed] [Google Scholar]
- Cory S., Adams J. M. Deletions are associated with somatic rearrangement of immunoglobulin heavy chain genes. Cell. 1980 Jan;19(1):37–51. doi: 10.1016/0092-8674(80)90386-4. [DOI] [PubMed] [Google Scholar]
- Davis M. M., Calame K., Early P. W., Livant D. L., Joho R., Weissman I. L., Hood L. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature. 1980 Feb 21;283(5749):733–739. doi: 10.1038/283733a0. [DOI] [PubMed] [Google Scholar]
- Engvall E., Perlmann P. Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry. 1971 Sep;8(9):871–874. doi: 10.1016/0019-2791(71)90454-x. [DOI] [PubMed] [Google Scholar]
- Hengartner H., Meo T., Müller E. Assignment of genes for immunoglobulin kappa and heavy chains to chromosomes 6 and 12 in mouse. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4494–4498. doi: 10.1073/pnas.75.9.4494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Honjo T., Kataoka T. Organization of immunoglobulin heavy chain genes and allelic deletion model. Proc Natl Acad Sci U S A. 1978 May;75(5):2140–2144. doi: 10.1073/pnas.75.5.2140. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabat D. Gene selection in hemoglobin and in antibody-synthesizing cells. Science. 1972 Jan 14;175(4018):134–140. doi: 10.1126/science.175.4018.134. [DOI] [PubMed] [Google Scholar]
- Kataoka T., Kawakami T., Takahashi N., Honjo T. Rearrangement of immunoglobulin gamma 1-chain gene and mechanism for heavy-chain class switch. Proc Natl Acad Sci U S A. 1980 Feb;77(2):919–923. doi: 10.1073/pnas.77.2.919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kearney J. F., Cooper M. D., Lawton A. R. B lymphocyte differentiation induced by lipopolysaccharide. III. Suppression of B cell maturation by anti-mouse immunoglobulin antibodies. J Immunol. 1976 Jun;116(6):1664–1668. [PubMed] [Google Scholar]
- Kearney J. F., Lawton A. R. B lymphocyte differentiation induced by lipopolysaccharide. I. Generation of cells synthesizing four major immunoglobulin classes. J Immunol. 1975 Sep;115(3):671–676. [PubMed] [Google Scholar]
- Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
- Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
- Köhler G., Hengartner H., Shulman M. J. Immunoglobulin production by lymphocyte hybridomas. Eur J Immunol. 1978 Feb;8(2):82–88. doi: 10.1002/eji.1830080203. [DOI] [PubMed] [Google Scholar]
- Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
- Lemke H., Hammerling G. J., Hohmann C., Rajewsky K. Hybrid cell lines secreting monoclonal antibody specific for major histocompatibility antigens of the mouse. Nature. 1978 Jan 19;271(5642):249–251. doi: 10.1038/271249a0. [DOI] [PubMed] [Google Scholar]
- Levitt D., Cooper M. D. Mouse pre-B cells synthesize and secrete mu heavy chains but not light chains. Cell. 1980 Mar;19(3):617–625. doi: 10.1016/s0092-8674(80)80038-9. [DOI] [PubMed] [Google Scholar]
- Maki R., Traunecker A., Sakano H., Roeder W., Tonegawa S. Exon shuffling generates an immunoglobulin heavy chain gene. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2138–2142. doi: 10.1073/pnas.77.4.2138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manning D. D. Heavy chain isotype suppression: a review of the immunosuppressive effects of heterologous anti-Ig heavy chain antisera. J Reticuloendothel Soc. 1975 Jul;18(1):63–86. [PubMed] [Google Scholar]
- Meo T., Johnson J., Beechey C. V., Andrews S. J., Peters J., Searle A. G. Linkage analyses of murine immunoglobulin heavy chain and serum prealbumin genes establish their location on chromosome 12 proximal to the T (5;12) 31H breakpoint in band 12F1. Proc Natl Acad Sci U S A. 1980 Jan;77(1):550–553. doi: 10.1073/pnas.77.1.550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nesbitt M. N., Francke U. A system of nomenclature for band patterns of mouse chromosomes. Chromosoma. 1973;41(2):145–158. doi: 10.1007/BF00319691. [DOI] [PubMed] [Google Scholar]
- Pernis B., Forni L., Luzzati A. L. Synthesis of multiple immunoglobulin classes by single lymphocytes. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 1):175–183. doi: 10.1101/sqb.1977.041.01.023. [DOI] [PubMed] [Google Scholar]
- Pierce C. W., Solliday S. M., Asofsky R. Immune responses in vitro. IV. Suppression of primary M, G, and A plaque-forming cell responses in mouse spleen cell cultures by class-specific antibody to mouse immunoglobulins. J Exp Med. 1972 Mar 1;135(3):675–697. doi: 10.1084/jem.135.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pratt D. M., Strominger J., Parkman R., Kaplan D., Schwaber J., Rosenberg N., Scher C. D. Abelson virus-transformed lymphocytes: null cells that modulate H-2. Cell. 1977 Nov;12(3):683–690. doi: 10.1016/0092-8674(77)90268-9. [DOI] [PubMed] [Google Scholar]
- Rabbitts T. H., Forster A., Dunnick W., Bentley D. L. The role of gene deletion in the immunoglobulin heavy chain switch. Nature. 1980 Jan 24;283(5745):351–356. doi: 10.1038/283351a0. [DOI] [PubMed] [Google Scholar]
- Raff M. C., Megson M., Owen J. J., Cooper M. D. Early production of intracellular IgM by B-lymphocyte precursors in mouse. Nature. 1976 Jan 22;259(5540):224–226. doi: 10.1038/259224a0. [DOI] [PubMed] [Google Scholar]
- Siden E. J., Baltimore D., Clark D., Rosenberg N. E. Immunoglobulin synthesis by lymphoid cells transformed in vitro by Abelson murine leukemia virus. Cell. 1979 Feb;16(2):389–396. doi: 10.1016/0092-8674(79)90014-x. [DOI] [PubMed] [Google Scholar]
- Vogler L. B., Crist W. M., Bockman D. E., Pearl E. R., Lawton A. R., Cooper M. D. Pre-B-cell leukemia. A new phenotype of childhood lymphoblastic leukemia. N Engl J Med. 1978 Apr 20;298(16):872–878. doi: 10.1056/NEJM197804202981603. [DOI] [PubMed] [Google Scholar]
- Wabl M. R., Forni L., Loor F. Switch in immunoglobulin class production observed in single clones of committed lymphocytes. Science. 1978 Mar 10;199(4333):1078–1080. doi: 10.1126/science.305113. [DOI] [PubMed] [Google Scholar]
- Wright W. E., Hayflick L. Use of biochemical lesions for selection of human cells with hybrid cytoplasms. Proc Natl Acad Sci U S A. 1975 May;72(5):1812–1816. doi: 10.1073/pnas.72.5.1812. [DOI] [PMC free article] [PubMed] [Google Scholar]