Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jan;78(1):569–573. doi: 10.1073/pnas.78.1.569

Identification of a third type of lambda light chain in mouse immunoglobulins.

T Azuma, L A Steiner, H N Eisen
PMCID: PMC319095  PMID: 6165998

Abstract

A third type of mouse lambda chain was identified in the course of examining light chains from four myeloma proteins and two monoclonal antibodies. On the basis of their antigenic properties and a characteristic COOH-terminal tryptic peptide, the light chains from these immunoglobulins had previously been provisionally identified as lambda 2 chains. However, four of these chains, designated now as lambda 3 (or lambda III), were found to share constant region features that clearly distinguish them from the other types of mouse lambda chains (lambda 1 and lambda 2). The amino acid sequence of more than 90% of the lambda 3 constant region (from position 120 to the COOH-terminus) was determined. In this region the lambda 3 sequence differs from the lambda 2 constant region at 5 positions and from the lambda 1 constant region at about 30 positions.

Full text

PDF
569

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Appella E. Amino acid sequences of two mouse immunoglobulin lambda chains. Proc Natl Acad Sci U S A. 1971 Mar;68(3):590–594. doi: 10.1073/pnas.68.3.590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Azuma T., Hamaguchi K., Migita S. Interactions between immunoglobulin polypeptide chains. J Biochem. 1974 Oct;76(4):685–693. [PubMed] [Google Scholar]
  3. Azuma T., Kobayashi O., Goto Y., Hamaguchi K. Monomer-dimer equilibria of a Bence Jones protein and its variable fragment. J Biochem. 1978 May;83(5):1485–1492. doi: 10.1093/oxfordjournals.jbchem.a132058. [DOI] [PubMed] [Google Scholar]
  4. Bernard O., Hozumi N., Tonegawa S. Sequences of mouse immunoglobulin light chain genes before and after somatic changes. Cell. 1978 Dec;15(4):1133–1144. doi: 10.1016/0092-8674(78)90041-7. [DOI] [PubMed] [Google Scholar]
  5. Blaser K., Eisen H. N. Lambda2 light chains in normal mouse immunoglobulins. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1495–1499. doi: 10.1073/pnas.75.3.1495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
  7. Brack C., Hirama M., Lenhard-Schuller R., Tonegawa S. A complete immunoglobulin gene is created by somatic recombination. Cell. 1978 Sep;15(1):1–14. doi: 10.1016/0092-8674(78)90078-8. [DOI] [PubMed] [Google Scholar]
  8. Brauer A. W., Margolies M. N., Haber E. The application of 0.1 M quadrol to the microsequence of proteins and the sequence of tryptic peptides. Biochemistry. 1975 Jul;14(13):3029–3035. doi: 10.1021/bi00684a036. [DOI] [PubMed] [Google Scholar]
  9. Cotner T., Eisen H. N. The natural abundance of lambda2-light chains in inbred mice. J Exp Med. 1978 Nov 1;148(5):1388–1399. doi: 10.1084/jem.148.5.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dugan E. S., Bradshaw R. A., Simms E. S., Eisen H. N. Amino acid sequence of the light chain of a mouse myeloma protein (MOPC-315). Biochemistry. 1973 Dec 18;12(26):5400–5416. [PubMed] [Google Scholar]
  11. Ein D. Nonallelic behavior of the Oz groups in human lambda immunoglobulin chains. Proc Natl Acad Sci U S A. 1968 Jul;60(3):982–985. doi: 10.1073/pnas.60.3.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Fett F. W., Deutsch H. F. A new lambda-chain gene. Immunochemistry. 1975 Aug;12(8):643–652. doi: 10.1016/0019-2791(75)90209-8. [DOI] [PubMed] [Google Scholar]
  13. Fett J. W., Deutsch H. F. The variability of human lambda-chain constant regions and some relationships to V-regions sequences. Immunochemistry. 1976 Feb;13(2):149–155. doi: 10.1016/0019-2791(76)90283-4. [DOI] [PubMed] [Google Scholar]
  14. Fleischman J. B. Amino acid sequences in the Fd of a rabbit antibody heavy chain. Immunochemistry. 1973 Jun;10(6):401–407. doi: 10.1016/0019-2791(73)90147-x. [DOI] [PubMed] [Google Scholar]
  15. Gibson D., Levanon M., Smithies O. Heterogeneity of normal human immunoglobulin light chains. Nonallelic variation in the constant region of lambda chains. Biochemistry. 1971 Aug 3;10(16):3114–3122. doi: 10.1021/bi00792a021. [DOI] [PubMed] [Google Scholar]
  16. Goetzl E. J., Metzger H. Affinity labeling of a mouse myeloma protein which binds nitrophenyl ligands. Kinetics of labeling and isolation of a labeled peptide. Biochemistry. 1970 Mar 3;9(5):1267–1278. doi: 10.1021/bi00807a031. [DOI] [PubMed] [Google Scholar]
  17. Hartley B. S. Strategy and tactics in protein chemistry. Biochem J. 1970 Oct;119(5):805–822. doi: 10.1042/bj1190805f. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Hermodson M. A., Ericsson L. H., Neurath H., Walsh K. A. Determination of the amino acid sequence of porcine trypsin by sequenator aalysis. Biochemistry. 1973 Aug 14;12(17):3146–3153. doi: 10.1021/bi00741a002. [DOI] [PubMed] [Google Scholar]
  19. Hozumi N., Tonegawa S. Evidence for somatic rearrangement of immunoglobulin genes coding for variable and constant regions. Proc Natl Acad Sci U S A. 1976 Oct;73(10):3628–3632. doi: 10.1073/pnas.73.10.3628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lieu T. S., Deutsch H. F., Tischendorf F. W. Human lambda-chain sequence variations and serologic associations. Immunochemistry. 1977 Jun;14(6):429–433. doi: 10.1016/0019-2791(77)90168-9. [DOI] [PubMed] [Google Scholar]
  21. Lopez de Castro J. A., Chiu Y. Y., Poljak R. J. Amino acid sequence of the variable region of the light (lambda) chain from human myeloma cryoimmunoglobulin IgG Hil. Biochemistry. 1978 May 2;17(9):1718–1723. doi: 10.1021/bi00602a021. [DOI] [PubMed] [Google Scholar]
  22. Schulenburg E. P., Simms E. S., Lynch R. G., Bradshaw R. A., Eisen H. N. Amino acid sequence of the light chain from a mouse myeloma protein with anti-hapten activity: evidence for a third type of light chain. Proc Natl Acad Sci U S A. 1971 Nov;68(11):2623–2626. doi: 10.1073/pnas.68.11.2623. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Steiner L. A., Pardo A. G., Margolies M. N. Amino acid sequence of the heavy-chain variable region of the crystallizable human myeloma protein Dob. Biochemistry. 1979 Sep 18;18(19):4068–4080. doi: 10.1021/bi00586a003. [DOI] [PubMed] [Google Scholar]
  24. Swan D., D'Eustachio P., Leinwand L., Seidman J., Keithley D., Ruddle F. H. Chromosomal assignment of the mouse kappa light chain genes. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2735–2739. doi: 10.1073/pnas.76.6.2735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  26. Tonegawa S., Maxam A. M., Tizard R., Bernard O., Gilbert W. Sequence of a mouse germ-line gene for a variable region of an immunoglobulin light chain. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1485–1489. doi: 10.1073/pnas.75.3.1485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Underdown B. J., Simms E. S., Eisen H. N. Subunit structure and number of combining sites of the immunoglobulin A myeloma protein produced by mouse plasmacytoma MOPC-315. Biochemistry. 1971 Nov 23;10(24):4359–4368. doi: 10.1021/bi00800a002. [DOI] [PubMed] [Google Scholar]
  28. Weigert M. G., Cesari I. M., Yonkovich S. J., Cohn M. Variability in the lambda light chain sequences of mouse antibody. Nature. 1970 Dec 12;228(5276):1045–1047. doi: 10.1038/2281045a0. [DOI] [PubMed] [Google Scholar]
  29. Weigert M., Riblet R. Genetic control of antibody variable regions. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 2):837–846. doi: 10.1101/sqb.1977.041.01.093. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES