Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1366–1370. doi: 10.1073/pnas.78.3.1366

Obligatory separation of hormone binding and biological response curves in systems dependent upon secondary mediators of hormone action.

S Strickland, J N Loeb
PMCID: PMC319131  PMID: 6262790

Abstract

A mathematical model is presented that describes the effects of hormone concentration on receptor saturation and biological response in systems dependent upon the generation of a secondary mediator such as cyclic AMP. The analysis makes the following assumptions: (i) the binding of hormone to its receptor is a reversible, second-order reaction; (ii) the concentration of mediator that is generated is directly proportional to the number of membrane binding sites occupied by hormone; and (iii) the binding of the mediator with its intracellular receptor to generate an effector complex is also second-order and results in a proportionate biological response. It follows from this treatment that the hormone concentration required for half-maximal biological response is formally lower than that required for half-maximal receptor saturation and that the difference between these two concentrations will depend upon the ratio of total mediator generated at full receptor occupancy to the dissociation constant of the mediator with its receptor. Without invoking concepts of negative cooperativity, this model offers a simple explanation for discrepancies between receptor occupancy and biological response curves that are often observed. Moreover, the mathematical form of the predicted biological response curves conforms to the shape of the response curves observed experimentally in a wide variety of systems.

Full text

PDF
1366

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beall R. J., Sayers G. Isolated adrenal cells: steroidogenesis and cyclic AMP accumulation in response to ACTH. Arch Biochem Biophys. 1972 Jan;148(1):70–76. doi: 10.1016/0003-9861(72)90116-6. [DOI] [PubMed] [Google Scholar]
  2. Bergman R. N., Hechter O. Neurohypophyseal hormone-responsive renal adenylate cyclase. IV. A random-hit matrix model for coupline in a hormone-sensitive adenylate cyclase system. J Biol Chem. 1978 May 10;253(9):3238–3250. [PubMed] [Google Scholar]
  3. Birnbaumer L., Pohl S. L. Relation of glucagon-specific binding sites to glucagon-dependent stimulation of adenylyl cyclase activity in plasma membranes of rat liver. J Biol Chem. 1973 Mar 25;248(6):2056–2061. [PubMed] [Google Scholar]
  4. Boeynaems J. M., Dumont J. E. The two-step model of ligand-receptor interaction. Mol Cell Endocrinol. 1977 Mar;7(1):33–47. doi: 10.1016/0303-7207(77)90074-0. [DOI] [PubMed] [Google Scholar]
  5. Catt K. J., Dufau M. L. Spare gonadotrophin receptors in rat testis. Nat New Biol. 1973 Aug 15;244(137):219–221. doi: 10.1038/newbio244219a0. [DOI] [PubMed] [Google Scholar]
  6. Furukawa H., Bilezikian J. P., Loeb J. N. Effects of ouabain and isoproterenol on potassium influx in the turkey erythrocyte. Quantitative relation to ligand binding and cyclic AMP generation. Biochim Biophys Acta. 1980 May 23;598(2):345–356. doi: 10.1016/0005-2736(80)90012-7. [DOI] [PubMed] [Google Scholar]
  7. Gammeltoft S., Gliemann J. Binding and degradation of 125I-labelled insulin by isolated rat fat cells. Biochim Biophys Acta. 1973 Aug 17;320(1):16–32. doi: 10.1016/0304-4165(73)90161-x. [DOI] [PubMed] [Google Scholar]
  8. Gardner J. D., Klaeveman H. L., Bilezikian J. P., Aurbach G. D. Effect of beta-adrenergic catecholamines on sodium transport in turkey erythrocytes. J Biol Chem. 1973 Aug 25;248(16):5590–5597. [PubMed] [Google Scholar]
  9. Helmreich E. J., Zenner H. P., Pfeuffer T. Signal transfer from hormone receptor to adenylate cyclase. Curr Top Cell Regul. 1976;10:41–87. doi: 10.1016/b978-0-12-152810-2.50009-7. [DOI] [PubMed] [Google Scholar]
  10. Jacobs S., Cuatrecasas P. The mobile receptor hypothesis and "cooperativity" of hormone binding. Application to insulin. Biochim Biophys Acta. 1976 May 21;433(3):482–495. doi: 10.1016/0005-2736(76)90275-3. [DOI] [PubMed] [Google Scholar]
  11. Kahn C. R. Membrane receptors for hormones and neurotransmitters. J Cell Biol. 1976 Aug;70(2 Pt 1):261–286. doi: 10.1083/jcb.70.2.261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kono T., Barham F. W. The relationship between the insulin-binding capacity of fat cells and the cellular response to insulin. Studies with intact and trypsin-treated fat cells. J Biol Chem. 1971 Oct 25;246(20):6210–6216. [PubMed] [Google Scholar]
  13. McIlhinney R. A., Schulster D. Studies on the binding of 125I-labelled corticotrophin to isolated rat adrenocortical cells. J Endocrinol. 1975 Jan;64(1):175–184. doi: 10.1677/joe.0.0640175. [DOI] [PubMed] [Google Scholar]
  14. Mendelson C., Dufau M., Catt K. Gonadotropin binding and stimulation of cyclic adenosine 3':5'-monophosphate and testosterone production in isolated Leydig cells. J Biol Chem. 1975 Nov 25;250(22):8818–8823. [PubMed] [Google Scholar]
  15. Moyle W. R., Ramachandran J. Effect of LH on steroidogenesis and cyclic AMP accumulation in rat Leydig cell preparations and mouse tumor Leydig cells. Endocrinology. 1973 Jul;93(1):127–134. doi: 10.1210/endo-93-1-127. [DOI] [PubMed] [Google Scholar]
  16. Pollet R. J., Standaert M. L., Haase B. A. Insulin binding to the human lymphocyte receptor. Evaluation of the negative cooperativity model. J Biol Chem. 1977 Aug 25;252(16):5828–5834. [PubMed] [Google Scholar]
  17. Richert N. D., Ryan R. J. Protease inhibitors block hormonal activation of adenylate cyclase. Biochem Biophys Res Commun. 1977 Sep 23;78(2):799–805. doi: 10.1016/0006-291x(77)90250-9. [DOI] [PubMed] [Google Scholar]
  18. Rodbell M., Birnbaumer L., Pohl S. L., Krans H. M. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. V. An obligatory role of guanylnucleotides in glucagon action. J Biol Chem. 1971 Mar 25;246(6):1877–1882. [PubMed] [Google Scholar]
  19. Roy C., Barth T., Jard S. Vasopressin-sensitive kidney adenylate cyclase. Structural requirements for attachment to the receptor and enzyme activation: studies with vasopressin analogues. J Biol Chem. 1975 Apr 25;250(8):3149–3156. [PubMed] [Google Scholar]
  20. de Meyts P., Roth J., Neville D. M., Jr, Gavin J. R., 3rd, Lesniak M. A. Insulin interactions with its receptors: experimental evidence for negative cooperativity. Biochem Biophys Res Commun. 1973 Nov 1;55(1):154–161. doi: 10.1016/s0006-291x(73)80072-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES