Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1456–1460. doi: 10.1073/pnas.78.3.1456

Diphosphatidylglycerol is required for optimal activity of beef heart cytochrome c oxidase.

S B Vik, G Georgevich, R A Capaldi
PMCID: PMC319149  PMID: 6262802

Abstract

Isolated beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) contains four or five molecules of tightly bound diphosphatidylglycerol per monomer (2-heme complex). This lipid could be removed in part, or wholly, by mixing the enzyme with high concentrations of Triton X-100 and then centrifuging the mixture through a glycerol gradient equilibrated in the same detergent. Cytochrome c oxidase retaining three or more diphosphatidylglycerol molecules per monomer was fully active when assayed in 1-oleoyl lysophosphatidylcholine. Upon removal of one or more of these diphosphatidylglycerols, enzymic activity was lost. Full activation could be obtained by adding diphosphatidylglycerol to the assay mixture along with lysophosphatidylcholine but not by adding phosphatidylcholine or phosphatidylethanolamine. Direct binding experiments, kinetic studies, and previous work using arylazidocytochrome c derivatives [Bisson, R., Jacobs, B. & Capaldi, R. A. (1980) Biochemistry 10, 4173-4178], indicate that diphosphatidylglycerol is involved in binding of substrate cytochrome c to cytochrome c oxidase.

Full text

PDF
1456

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed A. J., Smith H. T., Smith M. B., Millett F. S. Effect of specific lysine modification on the reduction of cytochrome c by succinate-cytochrome c reductase. Biochemistry. 1978 Jun 27;17(13):2479–2483. doi: 10.1021/bi00606a003. [DOI] [PubMed] [Google Scholar]
  2. Awasthi Y. C., Chuang T. F., Keenan T. W., Crane F. L. Tightly bound cardiolipin in cytochrome oxidase. Biochim Biophys Acta. 1971 Jan 12;226(1):42–52. doi: 10.1016/0005-2728(71)90176-9. [DOI] [PubMed] [Google Scholar]
  3. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  4. BRIERLEY G. P., MEROLA A. J. Studies of the electrontransfer system. 48. Phospholipid requirements in cytochrome oxidase. Biochim Biophys Acta. 1962 Oct 22;64:205–217. doi: 10.1016/0006-3002(62)90732-1. [DOI] [PubMed] [Google Scholar]
  5. Bisson R., Jacobs B., Capaldi R. A. Binding of arylazidocytochrome c derivatives to beef heart cytochrome c oxidase: cross-linking in the high- and low-affinity binding sites. Biochemistry. 1980 Sep 2;19(18):4173–4178. doi: 10.1021/bi00559a006. [DOI] [PubMed] [Google Scholar]
  6. Capaldi R. A., Green D. E. Membrane proteins and membrane structure. FEBS Lett. 1972 Sep 15;25(2):205–209. doi: 10.1016/0014-5793(72)80486-1. [DOI] [PubMed] [Google Scholar]
  7. Capaldi R. A., Hayashi H. The polypeptide composition of cytochrome oxidase from beef heart mitochondria. FEBS Lett. 1972 Oct 1;26(1):261–263. doi: 10.1016/0014-5793(72)80587-8. [DOI] [PubMed] [Google Scholar]
  8. Denes A. S., Stanacev N. Z. Spin-label study of the relation between enzymatic activity and lipid-protein organization in reconstituted cytochrome c oxidase. Can J Biochem. 1978 Sep;56(9):905–915. doi: 10.1139/o78-140. [DOI] [PubMed] [Google Scholar]
  9. Errede B., Kamen M. D. Comparative kinetic studies of cytochromes c in reactions with mitochondrial cytochrome c oxidase and reductase. Biochemistry. 1978 Mar 21;17(6):1015–1027. doi: 10.1021/bi00599a012. [DOI] [PubMed] [Google Scholar]
  10. Eytan G. D., Broza R. Role of charge and fluidity in the incorporation of cytochrome oxidase into liposomes. J Biol Chem. 1978 May 10;253(9):3196–3202. [PubMed] [Google Scholar]
  11. Ferguson-Miller S., Brautigan D. L., Margoliash E. Correlation of the kinetics of electron transfer activity of various eukaryotic cytochromes c with binding to mitochondrial cytochrome c oxidase. J Biol Chem. 1976 Feb 25;251(4):1104–1115. [PubMed] [Google Scholar]
  12. Ferguson-Miller S., Brautigan D. L., Margoliash E. Definition of cytochrome c binding domains by chemical modification. III. Kinetics of reaction of carboxydinitrophenyl cytochromes c with cytochrome c oxidase. J Biol Chem. 1978 Jan 10;253(1):149–159. [PubMed] [Google Scholar]
  13. Fuller S. D., Capaldi R. A., Henderson R. Structure of cytochrome c oxidase in deoxycholate-drived two-dimensional crystals. J Mol Biol. 1979 Oct 25;134(2):305–327. doi: 10.1016/0022-2836(79)90037-8. [DOI] [PubMed] [Google Scholar]
  14. Gazzotti P., Bock H., Fleischer S. Interaction of D-beta-hydroxybutyrate apodehydrogenase with phospholipids. J Biol Chem. 1975 Aug 10;250(15):5782–5790. [PubMed] [Google Scholar]
  15. Henderson R., Capaldi R. A., Leigh J. S. Arrangement of cytochrome oxidase molecules in two-dimensional vesicle crystals. J Mol Biol. 1977 Jun 5;112(4):631–648. doi: 10.1016/s0022-2836(77)80167-8. [DOI] [PubMed] [Google Scholar]
  16. Jost P. C., Griffith O. H., Capaldi R. A., Vanderkooi G. Evidence for boundary lipid in membranes. Proc Natl Acad Sci U S A. 1973 Feb;70(2):480–484. doi: 10.1073/pnas.70.2.480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kang C. H., Brautigan D. L., Osheroff N., Margoliash E. Definitaion of cytochrome c binding domains by chemical modification. Reaction of carboxydinitrophenyl- and trinitrophenyl-cytochromes c with baker's yeast cytochrome c peroxidase. J Biol Chem. 1978 Sep 25;253(18):6502–6510. [PubMed] [Google Scholar]
  18. Krebs J. J., Hauser H., Carafoli E. Asymmetric distribution of phospholipids in the inner membrane of beef heart mitochondria. J Biol Chem. 1979 Jun 25;254(12):5308–5316. [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lyons J. M., Wheaton T. A., Pratt H. K. Relationship between the Physical Nature of Mitochondrial Membranes and Chilling Sensitivity in Plants. Plant Physiol. 1964 Mar;39(2):262–268. doi: 10.1104/pp.39.2.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nicholls P. Catalytic activity of cytochromes c and c1 in mitochondria and submitochondrial particles. Biochim Biophys Acta. 1976 Apr 9;430(1):30–45. doi: 10.1016/0005-2728(76)90219-x. [DOI] [PubMed] [Google Scholar]
  22. Overath P., Brenner M., Gulik-Krzywicki T., Shechter E., Letellier L. Lipid phase transitions in cytoplasmic and outer membranes of Escherichia coli. Biochim Biophys Acta. 1975 May 6;389(2):358–369. doi: 10.1016/0005-2736(75)90328-4. [DOI] [PubMed] [Google Scholar]
  23. Palatini P., Dabbeni-Sala F., Pitotti A., Bruni A., Mandersloot J. C. Activation of (Na+ + K+)-dependent ATPase by lipid vesicles of negative phospholipids. Biochim Biophys Acta. 1977 Apr 1;466(1):1–9. doi: 10.1016/0005-2736(77)90203-6. [DOI] [PubMed] [Google Scholar]
  24. Raison J. K., Lyons J. M. Hibernation: alteration of mitochondrial membranes as a requisite for metabolism at low temperature. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2092–2094. doi: 10.1073/pnas.68.9.2092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rieder R., Bosshard H. R. Cytochrome bc1 and cytochrome oxidase can bind to the same surface domain of the cytochrome c molecule. FEBS Lett. 1978 Aug 15;92(2):223–226. doi: 10.1016/0014-5793(78)80759-5. [DOI] [PubMed] [Google Scholar]
  26. Robinson N. C., Capaldi R. A. Interaction of detergents with cytochrome c oxidase. Biochemistry. 1977 Feb 8;16(3):375–381. doi: 10.1021/bi00622a006. [DOI] [PubMed] [Google Scholar]
  27. Robinson N. C., Strey F., Talbert L. Investigation of the essential boundary layer phospholipids of cytochrome c oxidase using Triton X-100 delipidation. Biochemistry. 1980 Aug 5;19(16):3656–3661. doi: 10.1021/bi00557a003. [DOI] [PubMed] [Google Scholar]
  28. SMITH L., CAMERINO P. W. THE REACTION OF PARTICLE-BOUND CYTOCHROME C OXIDASE WITH ENDOGENOUS AND EXOGENOUS CYTOCHROME C. Biochemistry. 1963 Nov-Dec;2:1432–1439. doi: 10.1021/bi00906a040. [DOI] [PubMed] [Google Scholar]
  29. Seelig A., Seelig J. Lipid-protein interaction in reconstituted cytochrome c oxidase/phospholipid membranes. Hoppe Seylers Z Physiol Chem. 1978 Dec;359(12):1747–1756. doi: 10.1515/bchm2.1978.359.2.1747. [DOI] [PubMed] [Google Scholar]
  30. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  31. Speck S. H., Ferguson-Miller S., Osheroff N., Margoliash E. Definition of cytochrome c binding domains by chemical modification: kinetics of reaction with beef mitochondrial reductase and functional organization of the respiratory chain. Proc Natl Acad Sci U S A. 1979 Jan;76(1):155–159. doi: 10.1073/pnas.76.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vanneste W. H., Ysebaert-Vanneste M., Mason H. S. The decline of molecular activity of cytochrome oxidase during purification. J Biol Chem. 1974 Dec 10;249(23):7390–7401. [PubMed] [Google Scholar]
  33. Vik S. B., Capaldi R. A. Conditions for optimal electron transfer activity of cytochrome c oxidase isolated from beef heart mitochondria. Biochem Biophys Res Commun. 1980 May 14;94(1):348–354. doi: 10.1016/s0006-291x(80)80227-0. [DOI] [PubMed] [Google Scholar]
  34. Vik S. B., Capaldi R. A. Lipid requirements for cytochrome c oxidase activity. Biochemistry. 1977 Dec 27;16(26):5755–5759. doi: 10.1021/bi00645a016. [DOI] [PubMed] [Google Scholar]
  35. Watts A., Marsh D., Knowles P. F. Lipid-substituted cytochrome oxidase: no absolute requirement of cardiolipin for activity. Biochem Biophys Res Commun. 1978 Mar 30;81(2):403–409. doi: 10.1016/0006-291x(78)91547-4. [DOI] [PubMed] [Google Scholar]
  36. Yu C., Yu L., King T. E. Studies on cytochrome oxidase. Interactions of the cytochrome oxidase protein with phospholipids and cytochrome c. J Biol Chem. 1975 Feb 25;250(4):1383–1392. [PubMed] [Google Scholar]
  37. van Gelder B. F. On cytochrome c oxidase. I. The extinction coefficients of cytochrome a and cytochrome a3. Biochim Biophys Acta. 1966 Apr 12;118(1):36–46. doi: 10.1016/s0926-6593(66)80142-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES