Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1523–1526. doi: 10.1073/pnas.78.3.1523

Formation of 11-trans slow reacting substances.

V Atrache, D E Sok, J K Pai, C J Sih
PMCID: PMC319163  PMID: 6112746

Abstract

Under strongly basic conditions [excess LiOH, dimethoxyethane/water (4:1, vol/vol)], purified slow reacting substances (SRSs) SRS-GSH and SRS-Cys were not isomerized to their corresponding 11-trans isomers. However, addition of thiols such as glutathione (GSH) or L-cysteine to this basic medium produced various amounts of 11-trans-SRS, depending on the thiol concentration. This chemical isomerization was inhibited by the radical scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidinooxy free radical (HTMP); the inhibition suggests that the thiyl radical (RS) is added reversibly to the triene system at C-12, resulting in the overall cis leads to trans isomerization of the 11,12 double bond. Because the amount of 11-trans-SRS-Cys produced by intact rat basophilic leukemia (RBL-1) cells was consistently higher than the amount produced in boiled cells, we believe that intact RBL-1 cells contain enzyme systems that form peroxides, which are known to enhance the formation of thiyl radicals, required for cis leads to trans isomerization. Likewise, HTMP inhibited the formation of 11-trans-SRS-Cys in this cell system.

Full text

PDF
1523

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Clark D. A., Goto G., Marfat A., Corey E. J., Hammarström S., Samuelsson B. 11-Trans leukotriene C: a naturally occurring slow reacting substance. Biochem Biophys Res Commun. 1980 Jun 30;94(4):1133–1139. doi: 10.1016/0006-291x(80)90537-9. [DOI] [PubMed] [Google Scholar]
  2. Griffith O. W., Meister A. Translocation of intracellular glutathione to membrane-bound gamma-glutamyl transpeptidase as a discrete step in the gamma-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc Natl Acad Sci U S A. 1979 Jan;76(1):268–272. doi: 10.1073/pnas.76.1.268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hamberg M., Samuelsson B. On the specificity of the oxygenation of unsaturated fatty acids catalyzed by soybean lipoxidase. J Biol Chem. 1967 Nov 25;242(22):5329–5335. [PubMed] [Google Scholar]
  4. Hammarström S., Murphy R. C., Samuelsson B., Clark D. A., Mioskowski C., Corey E. J. Structure of leukotriene C. Identification of the amino acid part. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1266–1272. doi: 10.1016/0006-291x(79)91203-8. [DOI] [PubMed] [Google Scholar]
  5. Houglum J., Pai J. K., Atrache V., Sok D. E., Sih C. J. Identification of the slow reacting substances from cat paws. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5688–5692. doi: 10.1073/pnas.77.10.5688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Lewis R. A., Austen K. F., Drazen J. M., Clark D. A., Marfat A., Corey E. J. Slow reacting substances of anaphylaxis: identification of leukotrienes C-1 and D from human and rat sources. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3710–3714. doi: 10.1073/pnas.77.6.3710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Morris H. R., Taylor G. W., Piper P. J., Samhoun M. N., Tippins J. R. Slow reacting substances (SRSs): the structure identification of SRSs from rat basophil leukaemia (RBL-1) cells. Prostaglandins. 1980 Feb;19(2):185–201. doi: 10.1016/0090-6980(80)90019-2. [DOI] [PubMed] [Google Scholar]
  8. Murphy R. C., Hammarström S., Samuelsson B. Leukotriene C: a slow-reacting substance from murine mastocytoma cells. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4275–4279. doi: 10.1073/pnas.76.9.4275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Orning L., Hammarström S., Samuelsson B. Leukotriene D: a slow reacting substance from rat basophilic leukemia cells. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2014–2017. doi: 10.1073/pnas.77.4.2014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sok D. E., Pai J. K., Atrache V., Sih C. J. Characterization of slow reacting substances (SRSs) of rat basophilic leukemia (RBL-1) cells: effect of cysteine on SRS profile. Proc Natl Acad Sci U S A. 1980 Nov;77(11):6481–6485. doi: 10.1073/pnas.77.11.6481. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES