Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1542–1546. doi: 10.1073/pnas.78.3.1542

Specific binding of eukaryotic initiation factor 2 to satellite tobacco necrosis virus RNA at a 5′-terminal sequence comprising the ribosome binding site

Raymond Kaempfer 1,*, John van Emmelo 1, Walter Fiers 1
PMCID: PMC319167  PMID: 6940171

Abstract

The mRNA-binding property of eukaryotic initiation factor 2 (eIF-2) was examined by studying its interaction with satellite tobacco necrosis virus (STNV) RNA carrying a 32P-labeled 5′ end. The RNA molecules bound by limiting amounts of eIF-2 were isolated and digested with pancreatic and T1 RNases. Digestion patterns showed that the labeled STNV RNA preparation offered to eIF-2 was heterogeneous, containing more than 30 different 5′ ends; by contrast, the RNA selected by eIF-2 possessed predominantly one 5′ end, pApGpUp..., the 5′-terminal sequence of intact STNV RNA. Binding analysis of individual 5′-terminal fragments generated from isolated, intact, STNV RNA by partial digestion with T1 RNase showed that eIF-2 does not bind detectably to the 32-nucleotide fragment ending with the initiation codon AUG or to shorter ones, but it does bind the 44-nucleotide fragment that contains the ribosome binding site. In addition to the structural features localized at the 5′ end of STNV RNA, eIF-2 appears to recognize a conformation found only in larger molecules, because intact RNA and large 5-′-terminal fragments are bound preferentially over smaller ones. However, binding of short 5′-terminal STNV RNA fragments to eIF-2 is specific, as judged by competition with STNV and ribosomal RNA. Finally, binding of eIF-2 to intact STNV RNA leads to a conformational change in the RNA that greatly facilitates cleavage by T1 and P1 RNases at sites in the vicinity of the initiation region. These results show that eIF-2 interacts specifically with the 5′-terminal region of STNV RNA that contains the ribosome binding site and causes local unfolding of the RNA structure.

Keywords: mRNA recognition, translation, RNA conformation, partial nuclease digestion

Full text

PDF

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrieux A., Rosenfeld M. G. Characterization of GTP-dependent Met-tRNAf binding protein. J Biol Chem. 1977 Jun 10;252(11):3843–3847. [PubMed] [Google Scholar]
  2. Barrieux A., Rosenfeld M. G. mRNA-induced dissociation of initiation factor 2. J Biol Chem. 1978 Sep 25;253(18):6311–6314. [PubMed] [Google Scholar]
  3. Browning K. S., Leung D. W., Clark J. M., Jr Protection of satellite tobacco necrosis virus ribonucleic acid by wheat germ 40S and 80S ribosomes. Biochemistry. 1980 May 13;19(10):2276–2283. doi: 10.1021/bi00551a044. [DOI] [PubMed] [Google Scholar]
  4. Clemens M. J., Safer B., Merrick W. C., Anderson W. F., London I. M. Inhibition of protein synthesis in rabbit reticulocyte lysates by double-stranded RNA and oxidized glutathione: indirect mode of action on polypeptide chain initiation. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1286–1290. doi: 10.1073/pnas.72.4.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Darnbrough C., Legon S., Hunt T., Jackson R. J. Initiation of protein synthesis: evidence for messenger RNA-independent binding of methionyl-transfer RNA to the 40 S ribosomal subunit. J Mol Biol. 1973 May 25;76(3):379–403. doi: 10.1016/0022-2836(73)90511-1. [DOI] [PubMed] [Google Scholar]
  6. Dettman G. L., Stanley W. M., Jr Recognition of eukaryotic initiator tRNA by an initiation factor and the transfer of the methionine moiety into peptide linkage. Biochim Biophys Acta. 1972 Nov 16;287(1):124–133. doi: 10.1016/0005-2787(72)90336-x. [DOI] [PubMed] [Google Scholar]
  7. Di Segni G., Rosen H., Kaempfer R. Competition between alpha- and beta-globin messenger ribonucleic acids for eucaryotic initiation factor 2. Biochemistry. 1979 Jun 26;18(13):2847–2854. doi: 10.1021/bi00580a027. [DOI] [PubMed] [Google Scholar]
  8. Hellerman J. G., Shafritz D. A. Interaction of poly(A) and mRNA with eukaryotic initiator met-tRNA-f binding factor: identification of this activity on reticulocyte ribonucleic acid protein particles. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1021–1025. doi: 10.1073/pnas.72.3.1021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Horst J., Fraenkel-Conrat H., Mandeles S. Terminal heterogeneity at both ends of the satellite tobacco necrosis virus ribonucleic acid. Biochemistry. 1971 Dec 7;10(25):4748–4752. doi: 10.1021/bi00801a022. [DOI] [PubMed] [Google Scholar]
  10. Kaempfer R. Binding of messenger RNA in initiation of eukaryotic translation. Methods Enzymol. 1979;60:380–392. doi: 10.1016/s0076-6879(79)60036-8. [DOI] [PubMed] [Google Scholar]
  11. Kaempfer R., Hollender R., Abrams W. R., Israeli R. Specific binding of messenger RNA and methionyl-tRNAfMet by the same initiation factor for eukaryotic protein synthesis. Proc Natl Acad Sci U S A. 1978 Jan;75(1):209–213. doi: 10.1073/pnas.75.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kaempfer R., Hollender R., Soreq H., Nudel U. Recognition of messenger RNA in eukaryotic protein synthesis. Equilibrium studies of the interaction between messenger RNA and the initiation factor that binds methionyl-tRNAf. Eur J Biochem. 1979 Mar;94(2):591–600. doi: 10.1111/j.1432-1033.1979.tb12929.x. [DOI] [PubMed] [Google Scholar]
  13. Kaempfer R., Israeli R., Rosen H., Knoller S., Zilberstein A., Schmidt A., Revel M. Reversal of the interferon-induced block of protein synthesis by purified preparations of eucaryotic initiation factor 2. Virology. 1979 Nov;99(1):170–173. doi: 10.1016/0042-6822(79)90049-7. [DOI] [PubMed] [Google Scholar]
  14. Kaempfer R., Rosen H., Israeli R. Translational control: recognition of the methylated 5' end and an internal sequence in eukaryotic mRNA by the initiation factor that binds methionyl-tRNAfMet. Proc Natl Acad Sci U S A. 1978 Feb;75(2):650–654. doi: 10.1073/pnas.75.2.650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Leung D. W., Browning K. S., Heckman J. E., RajBhandary U. L., Clark J. M., Jr Nucleotide sequence of the 5' terminus of satellite tobacco necrosis virus ribonucleic acid. Biochemistry. 1979 Apr 3;18(7):1361–1366. doi: 10.1021/bi00574a036. [DOI] [PubMed] [Google Scholar]
  16. Leung D. W., Gilbert C. W., Smith R. E., Sasavage N. L., Clark J. M., Jr Translation of satellite tobacco necrosis virus ribonucleic acid by an in vitro system from wheat germ. Biochemistry. 1976 Nov 2;15(22):4943–4950. doi: 10.1021/bi00667a030. [DOI] [PubMed] [Google Scholar]
  17. Levin D. H., Kyner D., Acs G. Protein initiation in eukaryotes: formation and function of a ternary complex composed of a partially purified ribosomal factor, methionyl transfer RNA, and guanosine triphosphate. Proc Natl Acad Sci U S A. 1973 Jan;70(1):41–45. doi: 10.1073/pnas.70.1.41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Rosen H., Kaempfer R. Mutually exclusive binding of messenger RNA and initiator methionyl transfer RNA to eukaryotic initiation factor 2. Biochem Biophys Res Commun. 1979 Nov 28;91(2):449–455. doi: 10.1016/0006-291x(79)91542-0. [DOI] [PubMed] [Google Scholar]
  19. Schreier M. H., Staehelin T. Initiation of eukaryotic protein synthesis: (Met-tRNA f -40S ribosome) initiation complex catalysed by purified initiation factors in the absence of mRNA. Nat New Biol. 1973 Mar 14;242(115):35–38. doi: 10.1038/newbio242035a0. [DOI] [PubMed] [Google Scholar]
  20. Smith R. E., Clark J. M., Jr Effect of capping upon the mRNA properties of satellite tobacco necrosis virus ribonucleic acid. Biochemistry. 1979 Apr 3;18(7):1366–1371. doi: 10.1021/bi00574a037. [DOI] [PubMed] [Google Scholar]
  21. Trachsel H., Erni B., Schreier M. H., Staehelin T. Initiation of mammalian protein synthesis. II. The assembly of the initiation complex with purified initiation factors. J Mol Biol. 1977 Nov;116(4):755–767. doi: 10.1016/0022-2836(77)90269-8. [DOI] [PubMed] [Google Scholar]
  22. Wimmer E., Chang A. Y., Clark J. M., Jr, Reichmann M. E. Sequence studies of satellite tobacco necrosis virus RNA. Isolation and characterization of a 5'-terminal trinucleotide. J Mol Biol. 1968 Nov 28;38(1):59–73. doi: 10.1016/0022-2836(68)90128-9. [DOI] [PubMed] [Google Scholar]
  23. Ysebaert M., van Emmelo J., Fiers W. Total nucleotide sequence of a nearly full-size DNA copy of satellite tobacco necrosis virus RNA. J Mol Biol. 1980 Nov 5;143(3):273–287. doi: 10.1016/0022-2836(80)90190-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES