Abstract
Human fibrinogen was digested with trypsin to yield core fragments D and E, and antibodies were made against the isolated fragments. The Fab' fragments derived from these antibodies were mixed with native fibrinogen, resulting in the formation of soluble immune complexes. These were rotary shadowed with platinum or negatively contrasted with uranyl acetate and examined by electron microscopy. Fab' from anti-D immunoglobulin was found to be attached to the outer nodules of fibrinogen with a frequency of 79% prior to affinity purification and 91% afterward. Fab' from anti-E immunoglobulin attached to the central nodule with a frequency of 78% prior to affinity purification and 82% afterward. The evidence clearly identifies fragment D produced by plasmin or trypsin digestion of fibrinogen with the outer nodules and the single fragment E, with the central nodule.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Budzyński A. Z., Stahl M., Kopeć M., Latallo Z. S., Wegrzynowicz Z., Kowalski E. High molecular weight products of the late stage of fibrinogen proteolysis by plasmin and their structural relation to the fibrinogen molecule. Biochim Biophys Acta. 1967 Oct 23;147(2):313–323. doi: 10.1016/0005-2795(67)90409-6. [DOI] [PubMed] [Google Scholar]
- Chen J. P., Shurley H. M., Vickroy M. A facile separation of fragments D and E from the fibrinogen-fibrin degradation products of three mammalian species. Biochem Biophys Res Commun. 1974 Nov 6;61(1):66–71. doi: 10.1016/0006-291x(74)90534-8. [DOI] [PubMed] [Google Scholar]
- Coligan J. E., Slayter H. S. Physical, chemical and immunological characterization of saline-extracted, concanavalin A-purified carcinoembryonic antigen. Mol Immunol. 1979 Feb;16(2):129–135. doi: 10.1016/0161-5890(79)90056-7. [DOI] [PubMed] [Google Scholar]
- Donovan J. W., Mihalyi E. Conformation of fibrinogen: calorimetric evidence for a three-nodular structure. Proc Natl Acad Sci U S A. 1974 Oct;71(10):4125–4128. doi: 10.1073/pnas.71.10.4125. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doolittle R. F., Goldbaum D. M., Doolittle L. R. Designation of sequences involved in the "coiled-coil" interdomainal connections in fibrinogen: constructions of an atomic scale model. J Mol Biol. 1978 Apr 5;120(2):311–325. doi: 10.1016/0022-2836(78)90070-0. [DOI] [PubMed] [Google Scholar]
- Eisele J. W., Mihalyi E. Studies of the advanced stages of the plasmin and trypsin digestion of bovine fibrinogen. Thromb Res. 1975 Jun;6(6):511–522. doi: 10.1016/0049-3848(75)90063-8. [DOI] [PubMed] [Google Scholar]
- Fowler W. E., Erickson H. P. Trinodular structure of fibrinogen. Confirmation by both shadowing and negative stain electron microscopy. J Mol Biol. 1979 Oct 25;134(2):241–249. doi: 10.1016/0022-2836(79)90034-2. [DOI] [PubMed] [Google Scholar]
- Gordon Y. B., Martin M. J., Landon J., Chard T. The development of radioimmunoassays for fibrinogen degradation products: fragments D and E. Br J Haematol. 1975 Jan;29(1):109–119. doi: 10.1111/j.1365-2141.1975.tb01804.x. [DOI] [PubMed] [Google Scholar]
- Gorman R. R., Stoner G. E., Catlin A. The adsorption of fibrinogen. An electron microscope study. J Phys Chem. 1971 Jul 8;75(14):2103–2107. doi: 10.1021/j100683a006. [DOI] [PubMed] [Google Scholar]
- HALL C. E., SLAYTER H. S. The fibrinogen molecule: its size, shape, and mode of polymerization. J Biophys Biochem Cytol. 1959 Jan 25;5(1):11–16. doi: 10.1083/jcb.5.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krakow W., Endres G. F., Siegel B. M., Scheraga H. A. An electron microscopic investigation of the polymerization of bovine fibrin monomer. J Mol Biol. 1972 Oct 28;71(1):95–103. doi: 10.1016/0022-2836(72)90403-2. [DOI] [PubMed] [Google Scholar]
- Lake J. A. Practical aspects of immune electron microscopy. Methods Enzymol. 1979;61:250–257. doi: 10.1016/0076-6879(79)61014-5. [DOI] [PubMed] [Google Scholar]
- MIHALYI E., GODFREY J. E. Digestion of fibrinogen by trypsin. I. Kinetic studies of the reaction. Biochim Biophys Acta. 1963 Jan 8;67:73–89. doi: 10.1016/0006-3002(63)91798-0. [DOI] [PubMed] [Google Scholar]
- MOSESSON M. W., FINLAYSON J. S. SUBFRACTIONS OF HUMAN FIBRINOGEN; PREPARATION AND ANALYSIS. J Lab Clin Med. 1963 Oct;62:663–674. [PubMed] [Google Scholar]
- Marder V. J., Shulman N. R., Carroll W. R. High molecular weight derivatives of human fibrinogen produced by plasmin. I. Physicochemical and immunological characterization. J Biol Chem. 1969 Apr 25;244(8):2111–2119. [PubMed] [Google Scholar]
- Mihalyi E., Weinberg R. M., Towne D. W., Friedman M. E. Proteolytic fragmentation of fibrinogen. I. Comparison of the fragmentation of human and bovine fibrinogen by trypsin or plasmin. Biochemistry. 1976 Nov 30;15(24):5372–5381. doi: 10.1021/bi00669a025. [DOI] [PubMed] [Google Scholar]
- Mosesson M. W., Sherry S. The preparation and properties of human fibrinogen of relatively high solubility. Biochemistry. 1966 Sep;5(9):2829–2835. doi: 10.1021/bi00873a008. [DOI] [PubMed] [Google Scholar]
- NISONOFF A., MARKUS G., WISSLER F. C. Separation of univalent fragments of rabbit antibody by reduction of a single, labile disulphide bond. Nature. 1961 Jan 28;189:293–295. doi: 10.1038/189293a0. [DOI] [PubMed] [Google Scholar]
- NUSSENZWEIG V., SELIGMANN M., GRABAR P. [The degradation products of human fibrinogen by plasmin. II. Immunological study: existence of native anti-fibrinogen antibodies possessing different specificities]. Ann Inst Pasteur (Paris) 1961 Apr;100:490–508. [PubMed] [Google Scholar]
- Price T. M., Strong D. D., Rudee M. L., Doolittle R. F. Shadow-cast electron microscopy of fibrinogen with antibody fragments bound to specific regions. Proc Natl Acad Sci U S A. 1981 Jan;78(1):200–204. doi: 10.1073/pnas.78.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SOBER H. A., PETERSON E. A. Protein chromatography on ion exchange cellulose. Fed Proc. 1958 Dec;17(4):1116–1126. [PubMed] [Google Scholar]
- Slayter H. S. High-resolution metal replication of macromolecules. Ultramicroscopy. 1976 Sep-Oct;1(4):341–357. doi: 10.1016/0304-3991(76)90050-4. [DOI] [PubMed] [Google Scholar]
- Slayter H. S., Lowey S. Substructure of the myosin molecule as visualized by electron microscopy. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1611–1618. doi: 10.1073/pnas.58.4.1611. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Telford J. N., Nagy J. A., Hatcher P. A., Scheraga H. A. Location of peptide fragments in the fibrinogen molecule by immunoelectron microscopy. Proc Natl Acad Sci U S A. 1980 May;77(5):2372–2376. doi: 10.1073/pnas.77.5.2372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valentine R. C., Shapiro B. M., Stadtman E. R. Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry. 1968 Jun;7(6):2143–2152. doi: 10.1021/bi00846a017. [DOI] [PubMed] [Google Scholar]





