Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1700–1702. doi: 10.1073/pnas.78.3.1700

Accumulation of protoporphyrin IX and Zn protoporphyrin IX in Cyanidium caldarium

K Csatorday 1,*, R MacColl 1, D S Berns 1,
PMCID: PMC319200  PMID: 16592992

Abstract

In vivo fluorescence studies of Cyanidium caldarium mutants grown in the dark in dextrose-containing media have shown that these organisms accumulate protoporphyrin IX. In the dark the accumulated protoporphyrin IX is gradually turned into a metalloporphyrin, Zn protoporphyrin. In the light, in the chlorophyll-lacking mutant GGB, both compounds are degraded and phycobiliproteins are formed. These results implicate protoporphyrin IX in situ as the general precursor to tetrapyrrole pigments and Zn protoporphyrin IX as a possible intermediate or regulator in the biosynthesis of phycobilins.

Keywords: tetrapyrrole, biosynthesis, fluorescence

Full text

PDF
1700

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALLEN M. B. Studies with Cyanidium caldarium, an anomalously pigmented chlorophyte. Arch Mikrobiol. 1959;32(3):270–277. doi: 10.1007/BF00409348. [DOI] [PubMed] [Google Scholar]
  2. Cole W. J., Chapman D. J., Siegelman H. W. The structure and properties of phycocyanobilin and related bilatrienes. Biochemistry. 1968 Aug;7(8):2929–2935. doi: 10.1021/bi00848a033. [DOI] [PubMed] [Google Scholar]
  3. Crespi H. L., Smith U., Katz J. J. Phycocyanobilin. Structure and exchange studies by nuclear magnetic resonance and its mode of attachment in phycocyanin. A model for phytochrome. Biochemistry. 1968 Jun;7(6):2232–2242. doi: 10.1021/bi00846a028. [DOI] [PubMed] [Google Scholar]
  4. LESTER R., SCHMID R. BILIRUBIN METABOLISM. N Engl J Med. 1964 Apr 9;270:779–786. doi: 10.1056/NEJM196404092701507. [DOI] [PubMed] [Google Scholar]
  5. NICHOLS K. E., BOGORAD L. Studies on phycobilin formation with mutants of Cyanidium caldarium. Nature. 1960 Dec 3;188:870–872. doi: 10.1038/188870b0. [DOI] [PubMed] [Google Scholar]
  6. Rebeiz C. A., Castelfranco P. A. Protochlorophyll biosynthesis in a cell-free system from higher plants. Plant Physiol. 1971 Jan;47(1):24–32. doi: 10.1104/pp.47.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rebeiz C. A., Mattheis J. R., Smith B. B., Rebeiz C., Dayton D. F. Chloroplast biogenesis. Biosynthesis and accumulation of Mg-protoprophyrin IX monoester and longer wavelength metalloporphyrins by greening cotyledons. Arch Biochem Biophys. 1975 Feb;166(2):446–465. doi: 10.1016/0003-9861(75)90408-7. [DOI] [PubMed] [Google Scholar]
  8. Tenhunen R., Marver H. S., Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):748–755. doi: 10.1073/pnas.61.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Troxler R. F., Bogorad L. Studies on the formation of phycocyanin, porphyrins, and a blue phycobilin by wild-type and mutant strains of Cyanidium caldarium. Plant Physiol. 1966 Mar;41(3):491–499. doi: 10.1104/pp.41.3.491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Troxler R. F., Lester R. Biosynthesis of phycocyanobilin. Biochemistry. 1967 Dec;6(12):3840–3846. doi: 10.1021/bi00864a030. [DOI] [PubMed] [Google Scholar]
  11. Troxler R. F. Synthesis of bile pigments in plants. Formation of carbon monoxide and phycocyanobilin in wild-type and mutant strains of the alga, Cyanidium caldarium. Biochemistry. 1972 Nov 7;11(23):4235–4242. doi: 10.1021/bi00773a007. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES