Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1892–1895. doi: 10.1073/pnas.78.3.1892

Biochemical evidence for membrane disintegration in human cataracts.

M H Garner, D Roy, L Rosenfeld, W H Garner, A Spector
PMCID: PMC319241  PMID: 6785760

Abstract

Biochemical evidence is presented for the disintegration of the lens fiber plasma membrane in human cataracts. The intrinsic membrane proteins are found in both the water-soluble and water-insoluble nonmembrane fractions of the cataract lens but not in the normal tissue. Furthermore, in contrast to the normal lens, not all of the lipid found in the cataractous lens is isolated with the membrane fraction. In cataracts, both the membrane and membrane fragments are involved in covalent high molecular weight aggregates with an extrinsic membrane protein (43,000 daltons) and a cytoplasmic protein (gamma-crystallin).

Full text

PDF
1892

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhuyan K. C., Bhuyan D. K. Superoxide dismutase of the eye: relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage. Biochim Biophys Acta. 1978 Aug 3;542(1):28–38. doi: 10.1016/0304-4165(78)90229-5. [DOI] [PubMed] [Google Scholar]
  2. Chylack L. T., Jr Classification of human cataracts. Arch Ophthalmol. 1978 May;96(5):888–892. doi: 10.1001/archopht.1978.03910050490021. [DOI] [PubMed] [Google Scholar]
  3. Cotlier E., Obara Y., Toftness B. Cholesterol and phospholipids in protein fractions of human lens and senile cataract. Biochim Biophys Acta. 1978 Aug 25;530(2):267–278. doi: 10.1016/0005-2760(78)90012-7. [DOI] [PubMed] [Google Scholar]
  4. Creighton M. O., Trevithick J. R., Mousa G. Y., Percy D. H., McKinna A. J., Dyson C., Maisel H., Bradley R. Globular bodies: a primary cause of the opacity in senile and diabetic posterior cortical subcapsular cataracts? Can J Ophthalmol. 1978 Jul;13(3):166–181. [PubMed] [Google Scholar]
  5. Croft L. R. The amino acid sequence of -crystallin (fraction II) from calf lens. Biochem J. 1972 Jul;128(4):961–970. doi: 10.1042/bj1280961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dilley K. J., Bron A. J., Habgood J. O. Anterior polar and posterior subcapsular cataract in a patient with retinitis pigmentosa: a light-microscopic and ultrastructural study. Exp Eye Res. 1976 Feb;22(2):155–167. doi: 10.1016/0014-4835(76)90042-7. [DOI] [PubMed] [Google Scholar]
  7. Duncan G., Bushell A. R. Ion analyses of human cataractous lenses. Exp Eye Res. 1975 Mar;20(3):223–230. doi: 10.1016/0014-4835(75)90136-0. [DOI] [PubMed] [Google Scholar]
  8. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  9. Farnsworth P. N., Burke P. A., Wagner B. J., Fu S. C., Regan T. J. Diabetic cataracts in the rhesus monkey lens. Metab Pediatr Ophthalmol. 1980;4(1):31–42. [PubMed] [Google Scholar]
  10. Garner M. H., Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1274–1277. doi: 10.1073/pnas.77.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Garner W. H., Spector A. Racemization in human lens: evidence of rapid insolubilization of specific polypeptides in cataract formation. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3618–3620. doi: 10.1073/pnas.75.8.3618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Goosey J. D., Zigler J. S., Jr, Kinoshita J. H. Cross-linking of lens crystallins in a photodynamic system: a process mediated by singlet oxygen. Science. 1980 Jun 13;208(4449):1278–1280. doi: 10.1126/science.7375939. [DOI] [PubMed] [Google Scholar]
  13. KINOSHITA J. H., MEROLA L. O., DIKMAK E. Osmotic changes in experimental galactose cataracts. Exp Eye Res. 1962 Jun;1:405–410. doi: 10.1016/s0014-4835(62)80030-x. [DOI] [PubMed] [Google Scholar]
  14. Liem-The K. N., Stols A. L., Jap P. H., Hoenders H. J. X-ray induced cataract in rabbit lens. Exp Eye Res. 1975 Apr;20(4):317–328. doi: 10.1016/0014-4835(75)90114-1. [DOI] [PubMed] [Google Scholar]
  15. Lin G. S., Macey R. I. Shape and stability changes in human erythrocyte membranes induced by metal cations. Biochim Biophys Acta. 1978 Sep 22;512(2):270–283. doi: 10.1016/0005-2736(78)90252-3. [DOI] [PubMed] [Google Scholar]
  16. MACH H. UNTERSUCHUNGEN VON LINSENEIWEISS UND MIKROELEKTROPHORESE VON WASSERLOESLICHEM EIWEISS IM ALTERSSTAR. Klin Monbl Augenheilkd. 1963 Dec;143:689–710. [PubMed] [Google Scholar]
  17. Matsuto T. [Scanning electron microscopic studies on the normal and senile cataractous human lenses (author's transl)]. Nippon Ganka Gakkai Zasshi. 1973 Aug;77(8):853–872. [PubMed] [Google Scholar]
  18. Philipson B. Changes in the lens related to the reduction of transparency. Exp Eye Res. 1973 Jun;16(1):29–39. doi: 10.1016/0014-4835(73)90234-0. [DOI] [PubMed] [Google Scholar]
  19. Roy D., Spector A., Farnsworth P. N. Human lens membrane: comparison of major intrinsic polypeptides from young and old lenses isolated by a new methodology. Exp Eye Res. 1979 Mar;28(3):353–358. doi: 10.1016/0014-4835(79)90097-6. [DOI] [PubMed] [Google Scholar]
  20. Shinohara T., Piatigorsky J. Regulation of protein synthesis, intracellular electrolytes and cataract formation in vitro. Nature. 1977 Dec 1;270(5636):406–411. doi: 10.1038/270406a0. [DOI] [PubMed] [Google Scholar]
  21. Spector A., Garner M. H., Garner W. H., Roy D., Farnsworth P., Shyne S. An extrinsic membrane polypeptide associated with high-molecular-weight protein aggregates in human cataract. Science. 1979 Jun 22;204(4399):1323–1326. doi: 10.1126/science.377484. [DOI] [PubMed] [Google Scholar]
  22. Spector A., Roy D. Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3244–3248. doi: 10.1073/pnas.75.7.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Unakar N. J., Genyea C., Reddan J. R., Reddy V. N. Ultrastructural changes during the development and reversal of galactose cataracts. Exp Eye Res. 1978 Feb;26(2):123–133. doi: 10.1016/0014-4835(78)90109-4. [DOI] [PubMed] [Google Scholar]
  24. Van Orden H. O., Carpenter F. H. Hydrolysis of phenylthiohydantoins of amino acids. Biochem Biophys Res Commun. 1964;14:399–403. doi: 10.1016/0006-291x(64)90075-0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES