Abstract
Sympathetic neurons receive direct synaptic input from cholinergic terminal boutons of preganglionic nerve fibers. The distribution of acetylcholine receptors at these synapses is not precisely known. This study shows that alpha-bungarotoxin, which binds specifically to nicotinic receptors on skeletal muscle, also may be useful for localizing postsynaptic nicotinic receptors on principal neurons in the paravertebral sympathetic ganglia of the bullfrog. alpha-Bungarotoxin (1-5 microM) produces a block of nicotinic (fast) excitatory postsynaptic potentials that is fully reversed after 5-8 hr of washing. Dihydro-beta-erythroidine, a nicotinic antagonist, reduces the half-time of recovery from the toxin block to one-third of the control value, presumably by competing for the same receptor sites. Furthermore, the response to applied carbachol is reduced by the toxin, indicating that the block of synaptic transmission is due to a decreased response of the postsynaptic membrane. Peroxidase-labeled alpha-bungarotoxin is localized to small (0.2- to 0.5-micrometers diameter) patches beneath synaptic boutons. Peroxidase reaction product is restricted to regions of the synaptic cleft just opposite the active zones of the presynaptic terminal. In addition, peroxidase-labeled antibodies against Torpedo acetylcholine receptor bind exclusively to these same synaptic regions; evidently these patches are the areas at which nicotinic receptors are concentrated at synaptic contacts on sympathetic neurons.
Full text
PDF![1948](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f715/319253/f19de7d3579c/pnas00654-0662.png)
![1949](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f715/319253/87a204a11b8c/pnas00654-0663.png)
![1950](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f715/319253/f92a64485790/pnas00654-0664.png)
![1951](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f715/319253/3b305c78c319/pnas00654-0665.png)
![1952](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f715/319253/657f1aedfc6e/pnas00654-0666.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ascher P., Large W. A., Rang H. P. Studies on the mechanism of action of acetylcholine antagonists on rat parasympathetic ganglion cells. J Physiol. 1979 Oct;295:139–170. doi: 10.1113/jphysiol.1979.sp012958. [DOI] [PMC free article] [PubMed] [Google Scholar]
- BLACKMAN J. G., GINSBORG B. L., RAY C. Synaptic transmission in the sympathetic ganglion of the frog. J Physiol. 1963 Jul;167:355–373. doi: 10.1113/jphysiol.1963.sp007155. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Fumagalli L. Department of Pharmacology, The School of Pharmacy, University of London, London, Great Britain. Brain Res. 1977 Jun 24;129(1):165–168. doi: 10.1016/0006-8993(77)90981-7. [DOI] [PubMed] [Google Scholar]
- Brown D. A., Garthwaite J. Action of surugatoxin on nicotinic receptors in the superior cervical ganglion of the rat. Br J Pharmacol. 1976 Sep;58(1):157–159. doi: 10.1111/j.1476-5381.1976.tb07705.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burden S. J., Hartzell H. C., Yoshikami D. Acetylcholine receptors at neuromuscular synapses: phylogenetic differences detected by snake alpha-neurotoxins. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3245–3249. doi: 10.1073/pnas.72.8.3245. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carbonetto S. T., Fambrough D. M., Muller K. J. Nonequivalence of alpha-bungarotoxin receptors and acetylcholine receptors in chick sympathetic neurons. Proc Natl Acad Sci U S A. 1978 Feb;75(2):1016–1020. doi: 10.1073/pnas.75.2.1016. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chiappinelli V. A., Zigmond R. E. alpha-Bungarotoxin blocks nicotinic transmission in the avian ciliary ganglion. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2999–3003. doi: 10.1073/pnas.75.6.2999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Daniels M. P., Vogel Z. Immunoperoxidase staining of alpha-bungarotoxin binding sites in muscle endplates shows distribution of acetylcholine receptors. Nature. 1975 Mar 27;254(5498):339–341. doi: 10.1038/254339a0. [DOI] [PubMed] [Google Scholar]
- Fertuck H. C., Salpeter M. M. Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J Cell Biol. 1976 Apr;69(1):144–158. doi: 10.1083/jcb.69.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Froehner S. C., Rafto S. Comparison of the subunits of Torpedo californica acetylcholine receptor by peptide mapping. Biochemistry. 1979 Jan 23;18(2):301–307. doi: 10.1021/bi00569a011. [DOI] [PubMed] [Google Scholar]
- Graham R. C., Jr, Karnovsky M. J. Glomerular permeability. Ultrastructural cytochemical studies using peroxidases as protein tracers. J Exp Med. 1966 Dec 1;124(6):1123–1134. doi: 10.1084/jem.124.6.1123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harris A. J., Kuffler S. W., Dennis M. J. Differential chemosensitivity of synaptic and extrasynaptic areas on the neuronal surface membrane in parasympathetic neurons of the frog, tested by microapplication of acetylcholine. Proc R Soc Lond B Biol Sci. 1971 Apr 27;177(1049):541–553. doi: 10.1098/rspb.1971.0046. [DOI] [PubMed] [Google Scholar]
- Kato E., Kuba K., Koketsu K. Effects of erabutoxins on the cholinergic receptors of bullfrog sympathetic ganglion cells. Brain Res. 1980 Jun 2;191(1):294–298. doi: 10.1016/0006-8993(80)90336-4. [DOI] [PubMed] [Google Scholar]
- Kouvelas E. D., Dichter M. A., Greene L. A. Chick sympathetic neurons develop receptors for alpha-bungarotoxin in vitro, but the toxin does not block nicotinic receptors. Brain Res. 1978 Oct 6;154(1):83–93. doi: 10.1016/0006-8993(78)91053-3. [DOI] [PubMed] [Google Scholar]
- Kuffler S. W., Yoshikami D. The distribution of acetylcholine sensitivity at the post-synaptic membrane of vertebrate skeletal twitch muscles: iontophoretic mapping in the micron range. J Physiol. 1975 Jan;244(3):703–730. doi: 10.1113/jphysiol.1975.sp010821. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee C. Y. Chemistry and pharmacology of polypeptide toxins in snake venoms. Annu Rev Pharmacol. 1972;12:265–286. doi: 10.1146/annurev.pa.12.040172.001405. [DOI] [PubMed] [Google Scholar]
- Miledi R., Szczepaniak A. C. Effect of Dendroaspis neurotoxins on synaptic transmission in the spinal cord of the frog. Proc R Soc Lond B Biol Sci. 1975 Jul 1;190(1099):267–274. doi: 10.1098/rspb.1975.0092. [DOI] [PubMed] [Google Scholar]
- Nishi S., Soeda H., Koketsu K. Studies on sympathetic B and C neurons and patterns of pregnaglionic innervation. J Cell Physiol. 1965 Aug;66(1):19–32. doi: 10.1002/jcp.1030660103. [DOI] [PubMed] [Google Scholar]
- Patrick J., Stallcup W. B. Immunological distinction between acetylcholine receptor and the alpha-bungarotoxin-binding component on sympathetic neurons. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4689–4692. doi: 10.1073/pnas.74.10.4689. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravdin P. M., Berg D. K. Inhibition of neuronal acetylcholine sensitivity by alpha-toxins from Bungarus multicinctus venom. Proc Natl Acad Sci U S A. 1979 Apr;76(4):2072–2076. doi: 10.1073/pnas.76.4.2072. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAKEUCHI A., TAKEUCHI N. LOCALIZED ACTION OF GAMMA-AMINOBUTYRIC ACID ON THE CRAYFISH MUSCLE. J Physiol. 1965 Mar;177:225–238. doi: 10.1113/jphysiol.1965.sp007588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- TAXI J. [Study of the ultrastkucture of the synaptic zones in the sympathetic ganglia of the frog]. C R Hebd Seances Acad Sci. 1961 Jan 4;252:174–176. [PubMed] [Google Scholar]
- Vogel Z., Maloney G. J., Ling A., Daniels M. P. Identification of synaptic acetylcholine receptor sites in retina with peroxidase-labeled alpha-bungarotoxin. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3268–3272. doi: 10.1073/pnas.74.8.3268. [DOI] [PMC free article] [PubMed] [Google Scholar]