Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Mar;78(3):1958–1961. doi: 10.1073/pnas.78.3.1958

Sexually dimorphic brain and behavioral asymmetries in the neonatal rat.

D A Ross, S D Glick, R C Meibach
PMCID: PMC319255  PMID: 6940200

Abstract

The 2-deoxy-D-glucose method was used to study asymmetries in cerebral metabolic activity in neonatal rats. Left-right asymmetries in 2-deoxy-D-glucose uptake were observed in hippocampus, diencephalon, cortex, and medulla-pons: 2-deoxy-D-glucose incorporation was greater in right hippocampus, right diencephalon, left cortex, and left medulla-pons. These asymmetries occurred only in females. We also observed neonatal asymmetries in tail position that, in both sexes, were predictive of adult turning preferences; females had right-sided biases in both neonatal and adult characteristics. Collectively these data indicate that cerebral lateralization is sexually dimorphic and is present at birth.

Full text

PDF
1958

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antelman S. M., Szechtman H., Chin P., Fisher A. E. Tail pinch-induced eating, gnawing and licking behavior in rats: dependence on the nigrostriatal dopamine system. Brain Res. 1975 Dec 5;99(2):319–337. doi: 10.1016/0006-8993(75)90032-3. [DOI] [PubMed] [Google Scholar]
  2. Denenberg V. H., Garbanati J., Sherman D. A., Yutzey D. A., Kaplan R. Infantile stimulation induces brain lateralization in rats. Science. 1978 Sep 22;201(4361):1150–1152. doi: 10.1126/science.684436. [DOI] [PubMed] [Google Scholar]
  3. Fuchs J. L., Moore R. Y. Development of circadian rhythmicity and light responsiveness in the rat suprachiasmatic nucleus: a study using the 2-deoxy[1-14C]glucose method. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1204–1208. doi: 10.1073/pnas.77.2.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Galaburda A. M., LeMay M., Kemper T. L., Geschwind N. Right-left asymmetrics in the brain. Science. 1978 Feb 24;199(4331):852–856. doi: 10.1126/science.341314. [DOI] [PubMed] [Google Scholar]
  5. Glick S. D., Cox R. D. Nocturnal rotation in normal rats: correlation with amphetamine-induced rotation and effects of nigrostriatal lesions. Brain Res. 1978 Jul 7;150(1):149–161. doi: 10.1016/0006-8993(78)90659-5. [DOI] [PubMed] [Google Scholar]
  6. Glick S. D., Meibach R. C., Cox R. D., Maayani S. Multiple and interrelated functional asymmetries in rat brain. Life Sci. 1979 Jul 23;25(4):395–400. doi: 10.1016/0024-3205(79)90272-8. [DOI] [PubMed] [Google Scholar]
  7. Glick S. D., Weaver L. M., Meibach R. C. Lateralization of reward in rats: differences in reinforcing thresholds. Science. 1980 Mar 7;207(4435):1093–1095. doi: 10.1126/science.7355277. [DOI] [PubMed] [Google Scholar]
  8. Gurney M. E., Konishi M. Hormone-induced sexual differentiation of brain and behavior in zebra finches. Science. 1980 Jun 20;208(4450):1380–1383. doi: 10.1126/science.208.4450.1380. [DOI] [PubMed] [Google Scholar]
  9. Jerussi T. P., Glick S. D. Drug-induced rotation in rats without lesions: behavioral and neurochemical indices of a normal asymmetry in nigro-striatal function. Psychopharmacology (Berl) 1976 Jun 23;47(3):249–260. doi: 10.1007/BF00427609. [DOI] [PubMed] [Google Scholar]
  10. Jerussi T. P., Glick S. D., Johnson C. L. Reciprocity of pre- and postsynaptic mechanisms involved in rotation as revealed by dopamine metabolism and adenylate cyclase stimulation. Brain Res. 1977 Jul 1;129(2):385–388. doi: 10.1016/0006-8993(77)90021-x. [DOI] [PubMed] [Google Scholar]
  11. Kohsaka S. I., Takamatsu K., Aoki E., Tsukada Y. Metabolic mapping of chick brain after imprinting using [14C]2-deoxyglucose technique. Brain Res. 1979 Aug 31;172(3):539–544. doi: 10.1016/0006-8993(79)90585-7. [DOI] [PubMed] [Google Scholar]
  12. Levy J. The mammalian brain and the adaptive advantage of cerebral asymmetry. Ann N Y Acad Sci. 1977 Sep 30;299:264–272. doi: 10.1111/j.1749-6632.1977.tb41913.x. [DOI] [PubMed] [Google Scholar]
  13. Loy R., Milner T. A. Sexual dimorphism in extent of axonal sprouting in rat hippocampus. Science. 1980 Jun 13;208(4449):1282–1284. doi: 10.1126/science.7375941. [DOI] [PubMed] [Google Scholar]
  14. Meibach R. C., Glick S. D., Ross D. A., Cox R. D., Maayani S. Intraperitoneal administration and other modifications of the 2-deoxy-D-glucose technique. Brain Res. 1980 Aug 11;195(1):167–176. doi: 10.1016/0006-8993(80)90874-4. [DOI] [PubMed] [Google Scholar]
  15. Mikoshiba K., Kohsaka S., Takamatsu K., Aoki E., Tsukada Y. Morphological and biochemical studies on the cerebral cortex from reeler mutant mice: development of cortical layers and metabolic mapping by the deoxyglucose method. J Neurochem. 1980 Apr;34(4):835–844. doi: 10.1111/j.1471-4159.1980.tb09655.x. [DOI] [PubMed] [Google Scholar]
  16. Oke A., Keller R., Mefford I., Adams R. N. Lateralization of norepinephrine in human thalamus. Science. 1978 Jun 23;200(4348):1411–1413. doi: 10.1126/science.663623. [DOI] [PubMed] [Google Scholar]
  17. Oke A., Lewis R., Adams R. N. Hemispheric asymmetry of norepinephrine distribution in rat thalamus. Brain Res. 1980 Apr 21;188(1):269–272. doi: 10.1016/0006-8993(80)90575-2. [DOI] [PubMed] [Google Scholar]
  18. Pfaff D., Keiner M. Atlas of estradiol-concentrating cells in the central nervous system of the female rat. J Comp Neurol. 1973 Sep 15;151(2):121–158. doi: 10.1002/cne.901510204. [DOI] [PubMed] [Google Scholar]
  19. Robinson R. G., Coyle J. T. The differential effect of right versus left hemispheric cerebral infarction on catecholamines and behavior in the rat. Brain Res. 1980 Apr 21;188(1):63–78. doi: 10.1016/0006-8993(80)90557-0. [DOI] [PubMed] [Google Scholar]
  20. Schwartz W. J., Smith C. B., Davidsen L., Savaki H., Sokoloff L., Mata M., Fink D. J., Gainer H. Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science. 1979 Aug 17;205(4407):723–725. doi: 10.1126/science.462184. [DOI] [PubMed] [Google Scholar]
  21. Sokoloff L., Reivich M., Kennedy C., Des Rosiers M. H., Patlak C. S., Pettigrew K. D., Sakurada O., Shinohara M. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem. 1977 May;28(5):897–916. doi: 10.1111/j.1471-4159.1977.tb10649.x. [DOI] [PubMed] [Google Scholar]
  22. Teicher M. H., Stewart W. B., Kauer J. S., Shepherd G. M. Suckling pheromone stimulation of a modified glomerular region in the developing rat olfactory bulb revealed by the 2-deoxyglucose method. Brain Res. 1980 Aug 4;194(2):530–535. doi: 10.1016/0006-8993(80)91237-8. [DOI] [PubMed] [Google Scholar]
  23. Turkewitz G., Creighton S. Changes in lateral differentiation of head posture in the human neonate. Dev Psychobiol. 1975 Jan;8(1):85–89. doi: 10.1002/dev.420080112. [DOI] [PubMed] [Google Scholar]
  24. Witelson D. F. Sex and the single hemisphere: specialization of the right hemisphere for spatial processing. Science. 1976 Jul 30;193(4251):425–427. doi: 10.1126/science.935879. [DOI] [PubMed] [Google Scholar]
  25. Zimmerberg B., Glick S. D., Jerussi T. P. Neurochemical correlate of a spatial preference in rats. Science. 1974 Aug 16;185(4151):623–625. doi: 10.1126/science.185.4151.623. [DOI] [PubMed] [Google Scholar]
  26. vom Saal F. S., Bronson F. H. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science. 1980 May 9;208(4444):597–599. doi: 10.1126/science.7367881. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES