Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Apr;78(4):2278–2282. doi: 10.1073/pnas.78.4.2278

Formycin 5'-triphosphate, a fluorescent analog of ATP, as a substrate for adenylate cyclase.

E F Rossomando, J H Jahngen, J F Eccleston
PMCID: PMC319328  PMID: 6941284

Abstract

Formycin 5'-triphosphate (FoTP), a fluorescent analog of ATP, is shown to be a substrate for the membrane-bound adenylate cyclase activity [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1] from rat osteosarcoma cells. The formation of the adenylate cyclase reaction product, 3',5'-cyclic formycin monophosphate (cFoMP), was followed by the conventional radioimmunoassay (RIA) procedure used to detect cAMP and by an assay procedure in which the reaction product was separated from the substrate by reverse-phase high-pressure liquid chromatography (HPLC) and the reaction product was detected by fluorometry. Because the HPLC--fluorometric procedure can determine the amount of cFoMP present in the reaction mixture within 6 min, the enzymatic conversion of FoTP to cFoMP can be followed directly during the course of a typical 15-min incubation. The amount of cFoMP detected by this procedure was found to be within 2% of the values obtained by the RIA. The rate of product formation with FoTP was similar to that observed with ATP and the activity of the enzyme was enhanced about 5-fold with guanyl-5'-yl imidodiphosphate when either ATP or FoTP was used as the substrate. Kinetic studies revealed values for the Vmax of 120 pmol/min per mg of protein and apparent Km values of 220 microM with both substrates. In addition to suggesting that the recognition of the substrate by the adenylate cyclase may not require a specific chemical structure of the 5-membered ring of the base or a unique configuration about either the glycosyl or the C(5')-C(4') bond, the results of this study are consistent with the idea that the cytotoxicity observed with the adenosine analog formycin may be the result of its metabolism to cFoMP. Furthermore, these studies indicate that the fluorescent analog FoTP can be used, in combination with HPLC, to provide an alternative, nonradioactive direct method for the assay of adenylate cyclase catalytic activity.

Full text

PDF
2278

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ACS G., REICH E., MORI M. BIOLOGICAL AND BIOCHEMICAL PROPERTIES OF THE ANALOGUE ANTIBIOTIC TUBERCIDIN. Proc Natl Acad Sci U S A. 1964 Aug;52:493–501. doi: 10.1073/pnas.52.2.493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agarwal R. P., Sagar S. M., Parks R. E., Jr Adenosine deaminase from human erythrocytes: purification and effects of adenosine analogs. Biochem Pharmacol. 1975 Mar 15;24(6):693–701. doi: 10.1016/0006-2952(75)90245-2. [DOI] [PubMed] [Google Scholar]
  3. Darlix J. L., Fromageot P., Reich E. Analysis of transcription in vitro using purine nucleotide analogs. Biochemistry. 1971 Apr 27;10(9):1525–1531. doi: 10.1021/bi00785a003. [DOI] [PubMed] [Google Scholar]
  4. DeWolf W. E., Jr, Fullin F. A., Schramm V. L. The catalytic site of AMP nucleosidase. Substrate specificity and pH effects with AMP and formycin 5'-PO4. J Biol Chem. 1979 Nov 10;254(21):10868–10875. [PubMed] [Google Scholar]
  5. Eccleston J. F., Trentham D. R. The interaction of chromophoric nucleotides with subfragment 1 of myosin. Biochem J. 1977 Apr 1;163(1):15–29. doi: 10.1042/bj1630015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Eisenbud M. Radioactive wastes from biomedical institutions. Science. 1980 Mar 21;207(4437):1299–1299. doi: 10.1126/science.7355289. [DOI] [PubMed] [Google Scholar]
  7. HORI M., TAKITA T., KOYAMA G., TADEUCHI T., UMEZAWA H. A NEW ANTIBIOTIC, FORMYCIN. J Antibiot (Tokyo) 1964 May;17:96–99. [PubMed] [Google Scholar]
  8. Haschemeyer A. E., Rich A. Nucleoside conformations: an analysis of steric barriers to rotation about the glycosidic bond. J Mol Biol. 1967 Jul 28;27(2):369–384. doi: 10.1016/0022-2836(67)90026-5. [DOI] [PubMed] [Google Scholar]
  9. Hecht S. M., Faulkner R. D., Hawrelak S. D. Competitive inhibition of beef heart cyclic AMP phosphodiesterase by cytokinins and related compounds. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4670–4674. doi: 10.1073/pnas.71.12.4670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Henderson J. F., Paterson A. R., Caldwell I. C., Hori M. Biochemical effects of formycin, an adenosine analog. Cancer Res. 1967 Apr;27(4):715–719. [PubMed] [Google Scholar]
  11. Hodge J. L., Rossomando E. F. Degradation of ATP by membrane-bound enzymatic activities in Dictyostelium discoideum monitored by high-pressure liquid chromatography. Anal Biochem. 1980 Feb;102(1):59–62. doi: 10.1016/0003-2697(80)90316-4. [DOI] [PubMed] [Google Scholar]
  12. Karlish S. J., Yates D. W., Glynn I. M. Transient kinetics of (Na+ +K+)-ATPase studied with a fluorescent substrate. Nature. 1976 Sep 16;263(5574):251–253. doi: 10.1038/263251a0. [DOI] [PubMed] [Google Scholar]
  13. Kuo J. F., Greengard P. Stimulation of adenosine 3',5'-monophosphate-dependent and guanosine 3',5'-monophosphate-dependent protein kinases by some analogs of adenosine 3',5'-monophosphate. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1032–1038. doi: 10.1016/0006-291x(70)90897-1. [DOI] [PubMed] [Google Scholar]
  14. Lindberg B. Some additional properties of partially purified mammalian adenosine kinase. Biochim Biophys Acta. 1969 Jul 8;185(1):245–247. doi: 10.1016/0005-2744(69)90300-3. [DOI] [PubMed] [Google Scholar]
  15. Makabe O., Miyadera A., Kinoshita M., Umezawa S. Cyclic phosphates of formycin. J Antibiot (Tokyo) 1978 May;31(5):456–467. doi: 10.7164/antibiotics.31.456. [DOI] [PubMed] [Google Scholar]
  16. Ortiz P. J. The inhibition of E. coli adenyl cyclase by ara ATP. Biochem Biophys Res Commun. 1972 Feb 25;46(4):1728–1733. doi: 10.1016/0006-291x(72)90809-1. [DOI] [PubMed] [Google Scholar]
  17. Ozer I., Scheit K. H. Steady-state kinetic studies on adenylate cyclase from Brevibacterium liquefaciens. Eur J Biochem. 1978 Apr;85(1):173–180. doi: 10.1111/j.1432-1033.1978.tb12225.x. [DOI] [PubMed] [Google Scholar]
  18. Prusiner P., Brennan T., Sundaralingam M. Crystal structure and molecular conformation of formycin monohydrates. Possible origin of the anomalous circular dichroic spectra in formycin mono- and polynucleotides. Biochemistry. 1973 Mar 13;12(6):1196–1202. doi: 10.1021/bi00730a028. [DOI] [PubMed] [Google Scholar]
  19. Rodan S. B., Egan J. J., Golub E. E., Rodan G. A. Comparison of bone and osteosarcoma adenylate cyclase. Partial purification of membranes and kinetic properties of enzyme. Biochem J. 1980 Mar 1;185(3):617–627. doi: 10.1042/bj1850617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SHEFTER E., TRUEBLOOD K. N. THE CRYSTAL AND MOLECULAR STRUCTURE OF D(+)-BARIUM URIDINE-5'-PHOSPHATE. Acta Crystallogr. 1965 Jun 10;18:1067–1077. doi: 10.1107/s0365110x65002530. [DOI] [PubMed] [Google Scholar]
  21. Salomon Y. Adenylate cyclase assay. Adv Cyclic Nucleotide Res. 1979;10:35–55. [PubMed] [Google Scholar]
  22. Shigeura H. T., Boxer G. E., Sampson S. D., Meloni M. L. Metabolism of 2-fluoroadenosine by Ehrlich ascites cells. Arch Biochem Biophys. 1965 Sep;111(3):713–719. doi: 10.1016/0003-9861(65)90254-7. [DOI] [PubMed] [Google Scholar]
  23. Steiner A. L., Parker C. W., Kipnis D. M. Radioimmunoassay for cyclic nucleotides. I. Preparation of antibodies and iodinated cyclic nucleotides. J Biol Chem. 1972 Feb 25;247(4):1106–1113. [PubMed] [Google Scholar]
  24. Takeuchi T., Iwanaga J., Aoyagi T., Umezawa H. Antiviral effect of formycin and formycin B. J Antibiot (Tokyo) 1966 Nov;19(6):286–287. [PubMed] [Google Scholar]
  25. Ward D. C., Cerami A., Reich E., Acs G., Altwerger L. Biochemical studies of the nucleoside analogue, formycin. J Biol Chem. 1969 Jun 25;244(12):3243–3250. [PubMed] [Google Scholar]
  26. Ward D. C., Reich E. Conformational properties of polyformycin: a polyribonucleotide with individual residues in the syn conformation. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1494–1501. doi: 10.1073/pnas.61.4.1494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ward D. C., Reich E., Stryer L. Fluorescence studies of nucleotides and polynucleotides. I. Formycin, 2-aminopurine riboside, 2,6-diaminopurine riboside, and their derivatives. J Biol Chem. 1969 Mar 10;244(5):1228–1237. [PubMed] [Google Scholar]
  28. Yount R. G. ATP analogs. Adv Enzymol Relat Areas Mol Biol. 1975;43:1–56. doi: 10.1002/9780470122884.ch1. [DOI] [PubMed] [Google Scholar]
  29. Zimmerman T. P. Nucleoside 3',5'-cyclic monophosphate metabolites of purine analogs. Possible role as physiological mediators. Biochem Pharmacol. 1979 Sep 1;28(17):2533–2539. doi: 10.1016/0006-2952(79)90022-4. [DOI] [PubMed] [Google Scholar]
  30. Zimmerman T. P., Rideout J. L., Wolberg G., Duncan G. S., Elion G. B. 2-Fluoroadenosine 3':5'-monophosphate. A metabolite of 2-fluoroadenosine in mouse cytotoxic lymphocytes. J Biol Chem. 1976 Nov 10;251(21):6757–6766. [PubMed] [Google Scholar]
  31. Zimmerman T. P., Wolberg G., Duncan G. S. Metabolism of tubercidin and formycin to their 3':5'-cyclic nucleotides in mammalian cells. J Biol Chem. 1978 Dec 25;253(24):8792–8797. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES