Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Apr;78(4):2307–2309. doi: 10.1073/pnas.78.4.2307

Hemerythrin's oxygen-binding reaction studied by laser photolysis.

N Alberding, D Lavalette, R H Austin
PMCID: PMC319334  PMID: 6941288

Abstract

The dioxygen--iron bond in oxyhemerythrin is shown to be photosensitive. The recombination reaction after photodissociation depends strongly on solvent viscosity. In water (eta = 1 centipoise or 1 x 10(-3) Pa . s) the recombination is monophasic and second-order in solvent oxygen concentration, with a bimolecular rate coefficient of 2.9 x 10(7) M-1 s-1. In a glycerol/water mixture (eta = 180 centipoise) a concentration-dependent geminate recombination process is also seen. This opens a class of proteins to study by flash photolysis.

Full text

PDF
2307

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austin R. H., Beeson K. W., Eisenstein L., Frauenfelder H., Gunsalus I. C. Dynamics of ligand binding to myoglobin. Biochemistry. 1975 Dec 2;14(24):5355–5373. doi: 10.1021/bi00695a021. [DOI] [PubMed] [Google Scholar]
  2. Austin R. H., Chan S. S. The rate of entry of dioxygen and carbon monoxide into myoglobin. Biophys J. 1978 Oct;24(1):175–186. doi: 10.1016/S0006-3495(78)85354-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bates G., Brunori M., Amiconi G., Antonini E., Wyman J. Studies on hemerythrin. I. Thermodynamic and kinetic aspects of oxygen binding. Biochemistry. 1968 Aug;7(8):3016–3020. doi: 10.1021/bi00848a044. [DOI] [PubMed] [Google Scholar]
  4. Beece D., Eisenstein L., Frauenfelder H., Good D., Marden M. C., Reinisch L., Reynolds A. H., Sorensen L. B., Yue K. T. Solvent viscosity and protein dynamics. Biochemistry. 1980 Nov 11;19(23):5147–5157. doi: 10.1021/bi00564a001. [DOI] [PubMed] [Google Scholar]
  5. Duddell D. A., Morris R. J., Richards J. T. Nanosecond laser photolysis of aqueous carbon monoxy- and oxyhaemoglobin. Biochim Biophys Acta. 1980 Jan 24;621(1):1–8. doi: 10.1016/0005-2795(80)90056-2. [DOI] [PubMed] [Google Scholar]
  6. Dunn J. B., Addison A. W., Bruce R. E., Loehr J. S., Loehr T. M. Comparison of hemerythrins from four species of sipunculids by optical absorption, circular dichroism, fluorescence emission, and resonance Raman spectroscopy. Biochemistry. 1977 Apr 19;16(8):1743–1749. doi: 10.1021/bi00627a035. [DOI] [PubMed] [Google Scholar]
  7. GIBSON Q. H., AINSWORTH S. Photosensitivity of haem compounds. Nature. 1957 Dec 21;180(4599):1416–1417. doi: 10.1038/1801416b0. [DOI] [PubMed] [Google Scholar]
  8. Sawicki C. A., Gibson Q. H. Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. J Biol Chem. 1976 Mar 25;251(6):1533–1542. [PubMed] [Google Scholar]
  9. de Waal D. J., Wilkins R. G. Kinetics of the hemerythrin-oxygen interaction. J Biol Chem. 1976 Apr 25;251(8):2339–2343. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES