Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 May;78(5):2757–2761. doi: 10.1073/pnas.78.5.2757

Complete amino acid sequence of alpha-tubulin from porcine brain.

H Ponstingl, E Krauhs, M Little, T Kempf
PMCID: PMC319436  PMID: 7019911

Abstract

The amino acid sequence of alpha-tubulin from porcine brain was determined by automated and manual Edman degradation of eight sets of overlapping peptides. It comprises 450 residues plus a COOH-terminal tyrosine that is present only in 15% of the material. A region of 40 residues at the COOH-terminus is highly acidic, mainly due to 16 glutamyl residues. This high concentration of negative charge suggests a region for binding cations. At least six positions, most of them around position 270, are occupied by two amino acid residues each. Several of these exchange sites were assigned to specific peptides by analysis of the purified corresponding fragments. These data indicate four alpha-tubulins in porcine brain. Although alpha-tubulin on the whole is unrelated to other proteins, there are regions that can be correlated to sequences of the myosin head, to actin, to tropomyosin, and to troponins C and T.

Full text

PDF
2757

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhattacharyya B., Wolff J. Promotion of fluorescence upon binding of colchicine to tubulin. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2627–2631. doi: 10.1073/pnas.71.7.2627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brauer A. W., Margolies M. N., Haber E. The application of 0.1 M quadrol to the microsequence of proteins and the sequence of tryptic peptides. Biochemistry. 1975 Jul;14(13):3029–3035. doi: 10.1021/bi00684a036. [DOI] [PubMed] [Google Scholar]
  3. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  4. Collins J. H., Elzinga M. The primary structure of actin from rabbit skeletal muscle. Completion and analysis of the amino acid sequence. J Biol Chem. 1975 Aug 10;250(15):5915–5920. [PubMed] [Google Scholar]
  5. Drapeau G. R. Substrate specificity of a proteolytic enzyme isolated from a mutant of Pseudomonas fragi. J Biol Chem. 1980 Feb 10;255(3):839–840. [PubMed] [Google Scholar]
  6. Eipper B. A. Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2283–2287. doi: 10.1073/pnas.69.8.2283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elzinga M., Collins J. H. Amino acid sequence of a myosin fragment that contains SH-1, SH-2, and Ntau-methylhistidine. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4281–4284. doi: 10.1073/pnas.74.10.4281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Geahlen R. L., Haley B. E. Use of a GTP photoaffinity probe to resolve aspects of the mechanism of tubulin polymerization. J Biol Chem. 1979 Dec 10;254(23):11982–11987. [PubMed] [Google Scholar]
  9. Jany K. D., Keil W., Meyer H., Kiltz H. H. Preparation of a highly purified bovine trypsin for use in protein sequence analysis. Biochim Biophys Acta. 1976 Nov 26;453(1):62–66. doi: 10.1016/0005-2795(76)90250-6. [DOI] [PubMed] [Google Scholar]
  10. Kelly P. T., Cotman C. W. Synaptic proteins. Characterization of tubulin and actin and identification of a distinct postsynaptic density polypeptide. J Cell Biol. 1978 Oct;79(1):173–183. doi: 10.1083/jcb.79.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kemphues K. J., Raff R. A., Kaufman T. C., Raff E. C. Mutation in a structural gene for a beta-tubulin specific to testis in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3991–3995. doi: 10.1073/pnas.76.8.3991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kirschner M. W. Microtubule assembly and nucleation. Int Rev Cytol. 1978;54:1–71. doi: 10.1016/s0074-7696(08)60164-3. [DOI] [PubMed] [Google Scholar]
  13. Kuriyama R., Sakai H. Role of tubulin-SH groups in polymerization to microtubules. Functional-SH groups in tubulin for polymerization. J Biochem. 1974 Sep;76(3):651–654. doi: 10.1093/oxfordjournals.jbchem.a130609. [DOI] [PubMed] [Google Scholar]
  14. Lee J. C., Corfman D., Frigon R. P., Timasheff S. N. Conformational study of calf brain tubulin. Arch Biochem Biophys. 1978 Jan 15;185(1):4–14. doi: 10.1016/0003-9861(78)90137-6. [DOI] [PubMed] [Google Scholar]
  15. Little M. Identification of a second beta chain in pig brain tubulin. FEBS Lett. 1979 Dec 1;108(1):283–286. doi: 10.1016/0014-5793(79)81229-6. [DOI] [PubMed] [Google Scholar]
  16. Lote C. J., Gent J. P., Wolstencroft J. H., Szelke M. An inhibitory tripeptide from cat spinal cord. Nature. 1976 Nov 11;264(5582):188–189. doi: 10.1038/264188a0. [DOI] [PubMed] [Google Scholar]
  17. Lu R. C., Elzinga M. The primary structure of tubulin. Sequences of the carboxyl terminus and seven other cyanogen bromide peptides from the alpha-chain. Biochim Biophys Acta. 1978 Dec 20;537(2):320–328. doi: 10.1016/0005-2795(78)90515-9. [DOI] [PubMed] [Google Scholar]
  18. Luduena R. F., Woodward D. O. Isolation and partial characterization of alpha and beta-tubulin from outer doublets of sea-urchin sperm and microtubules of chick-embryo brain. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3594–3598. doi: 10.1073/pnas.70.12.3594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ludueńa R. F., Shooter E. M., Wilson L. Structure of the tubulin dimer. J Biol Chem. 1977 Oct 25;252(20):7006–7014. [PubMed] [Google Scholar]
  20. Murofushi H. Purification and characterization of tubulin-tyrosine ligase from porcine brain. J Biochem. 1980 Mar;87(3):979–984. doi: 10.1093/oxfordjournals.jbchem.a132828. [DOI] [PubMed] [Google Scholar]
  21. Nishida E., Kobayashi T. Relationship between tubulin SH groups and bound guanine nucleotides. J Biochem. 1977 Feb;81(2):343–347. doi: 10.1093/oxfordjournals.jbchem.a131464. [DOI] [PubMed] [Google Scholar]
  22. Pearlstone J. R., Johnson P., Carpenter M. R., Smillie L. B. Primary structure of rabbit skeletal muscle troponin-T. Sequence determination of the NH2-terminal fragment CB3 and the complete sequence of troponin-T. J Biol Chem. 1977 Feb 10;252(3):983–989. [PubMed] [Google Scholar]
  23. Ponstingl H., Little M., Krauhs E., Kempf T. Carboxy-terminal amino acid sequence of alpha-tubulin from porcine brain. Nature. 1979 Nov 22;282(5737):423–425. doi: 10.1038/282423a0. [DOI] [PubMed] [Google Scholar]
  24. Ponstingl H., Nieto A., Beato M. Amino acid sequence of progesterone-induced rabbit uteroglobin. Biochemistry. 1978 Sep 19;17(19):3908–3912. doi: 10.1021/bi00612a003. [DOI] [PubMed] [Google Scholar]
  25. Sonneborn H. H., Zwilling R., Pfleiderer G. Zur Evolution der Endopeptidasen, X. Die Spaltungsspezifität der niedermolekularen Protease aus Astacus leptodactylus Esch. Hoppe Seylers Z Physiol Chem. 1969 Sep;350(9):1097–1102. [PubMed] [Google Scholar]
  26. Steiner M. 3',5'-cyclic AMP binds to and promotes polymerisation on platelet tubulin. Nature. 1978 Apr 27;272(5656):834–835. doi: 10.1038/272834a0. [DOI] [PubMed] [Google Scholar]
  27. Tarr G. E., Beecher J. F., Bell M., McKean D. J. Polyquarternary amines prevent peptide loss from sequenators. Anal Biochem. 1978 Feb;84(2):622–7?0=ENG. doi: 10.1016/0003-2697(78)90086-6. [DOI] [PubMed] [Google Scholar]
  28. Valenzuela P., Quiroga M., Zaldivar J., Rutter W. J., Kirschner M. W., Cleveland D. W. Nucleotide and corresponding amino acid sequences encoded by alpha and beta tubulin mRNAs. Nature. 1981 Feb 19;289(5799):650–655. doi: 10.1038/289650a0. [DOI] [PubMed] [Google Scholar]
  29. Ventilla M., Cantor C. R., Shelanski M. A circular dichroism study of microtubule protein. Biochemistry. 1972 Apr 25;11(9):1554–1561. [PubMed] [Google Scholar]
  30. Yamashita T., Soma Y., Kobayashi S., Sekine T. The amino acid sequence of SH-peptides involved in the active site of myosin A adenosinetriphosphatase. J Biochem. 1974 Mar;75(3):447–453. doi: 10.1093/oxfordjournals.jbchem.a130413. [DOI] [PubMed] [Google Scholar]
  31. Yang S., Criddle R. S. In vitro biosynthesis of membrane proteins in isolated mitochondria from Saccharomyces carlsbergensis. Biochemistry. 1970 Jul 21;9(15):3063–3072. doi: 10.1021/bi00817a020. [DOI] [PubMed] [Google Scholar]
  32. Zenner H. P., Pfeuffer T. Microtubular proteins in pigeon erythrocyte membranes. Eur J Biochem. 1976 Dec;71(1):177–184. doi: 10.1111/j.1432-1033.1976.tb11104.x. [DOI] [PubMed] [Google Scholar]
  33. Zimmerman C. L., Appella E., Pisano J. J. Rapid analysis of amino acid phenylthiohydantoins by high-performance liquid chromatography. Anal Biochem. 1977 Feb;77(2):569–573. doi: 10.1016/0003-2697(77)90276-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES