Abstract
With the completion of the primary structure of the 50,000- and 19,000-dalton fragments of human ceruloplasmin [ferroxidase; iron(II):oxygen oxidoreductase, EC 1.16.3.1], over half of the covalent structure of the single polypeptide chain of this protein is known. Visual and computer analysis of the sequence of the 564 amino acid residues in the two fragments gives clear evidence of statistically significant internal homology suggestive of evolutionary replication of two smaller units. Two homology regions, each composed of 224 residues, were defined by an intrasequence alignment that required only three gaps in each 224-residue segment. The two homology regions exhibited 43% identity in sequence, and 13% of the remaining positions had similar residues. The sequence of a 160-residue segment in ceruloplasmin exhibits significant homology to the active (copper-binding) sites of blue electron-transfer proteins such as azurins and plastocyanins and multicopper oxidases such as cytochrome oxidase and superoxide dismutase. It is proposed that a primitive ceruloplasmin gene was formed by the fusion of two genes coding, respectively, for protein abut 160 and 190 amino acid residues in length and that this precursor gene coding for about 350 amino acids was later triplicated to form the gene for the present-day ceruloplasmin molecule of about 1050 amino acids.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adman E. T., Stenkamp R. E., Sieker L. C., Jensen L. H. A crystallographic model for azurin a 3 A resolution. J Mol Biol. 1978 Jul 25;123(1):35–47. doi: 10.1016/0022-2836(78)90375-3. [DOI] [PubMed] [Google Scholar]
- Barker W. C., Ketcham L. K., Dayhoff M. O. A comprehensive examination of protein sequences for evidence of internal gene duplication. J Mol Evol. 1978 Feb 21;10(4):265–281. doi: 10.1007/BF01734217. [DOI] [PubMed] [Google Scholar]
- Barrell B. G., Bankier A. T., Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–194. doi: 10.1038/282189a0. [DOI] [PubMed] [Google Scholar]
- Bergaman C., Gandvik E. K., Nyman P. O., Strid L. The amino acid sequence of Stellacyanin from the lacquer tree. Biochem Biophys Res Commun. 1977 Aug 8;77(3):1052–1059. doi: 10.1016/s0006-291x(77)80084-3. [DOI] [PubMed] [Google Scholar]
- Briving C., Gandvik E. K., Nyman P. O. Structural studies around cysteine and cystine residues in the "blue" oxidase fungal laccase B. Similarity in amino acid sequence with ceruloplasmin. Biochem Biophys Res Commun. 1980 Mar 28;93(2):454–461. doi: 10.1016/0006-291x(80)91099-2. [DOI] [PubMed] [Google Scholar]
- Dwulet F. E., Putnam F. W. Complete amino acid sequence of a 50,000-dalton fragment of human ceruloplasmin. Proc Natl Acad Sci U S A. 1981 Feb;78(2):790–794. doi: 10.1073/pnas.78.2.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Egorov T. A., Svenson A., Rydén L., Carlsson J. A rapid and specific method for isolation of thiol-containing peptides from large proteins by thiol-disulfide exchange on a solid support. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3029–3033. doi: 10.1073/pnas.72.8.3029. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frieden E. Caeruloplasmin: a multi-functional metalloprotein of vertebrate plasma. Ciba Found Symp. 1980;79:93–124. doi: 10.1002/9780470720622.ch6. [DOI] [PubMed] [Google Scholar]
- Jabusch J. R., Farb D. L., Kerschensteiner D. A., Deutsch H. F. Some sulfhydryl properties and primary structure of human erythrocyte superoxide dismutase. Biochemistry. 1980 May 27;19(11):2310–2316. doi: 10.1021/bi00552a005. [DOI] [PubMed] [Google Scholar]
- Kingston I. B., Kingston B. L., Putnam F. W. Chemical evidence that proteolytic cleavage causes the heterogeneity present in human ceruloplasmin preparations. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5377–5381. doi: 10.1073/pnas.74.12.5377. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingston I. B., Kingston B. L., Putnam F. W. Complete amino acid sequence of a histidine-rich proteolytic fragment of human ceruloplasmin. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1668–1672. doi: 10.1073/pnas.76.4.1668. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kingston I. B., Kingston B. L., Putnam F. W. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. I. Amino acid sequence of the cyanogen bromide peptides. J Biol Chem. 1980 Apr 10;255(7):2878–2885. [PubMed] [Google Scholar]
- Kingston I. B., Kingston B. L., Putnam F. W. Primary structure of a histidine-rich proteolytic fragment of human ceruloplasmin. II. Amino acid sequence of the tryptic peptides. J Biol Chem. 1980 Apr 10;255(7):2886–2896. [PubMed] [Google Scholar]
- Noyer M., Dwulet F. E., Hao Y. L., Putnam F. W. Purification and characterization of undegraded human ceruloplasmin. Anal Biochem. 1980 Mar 1;102(2):450–458. doi: 10.1016/0003-2697(80)90181-5. [DOI] [PubMed] [Google Scholar]
- Reinhammar B., Malkin R., Jensen P., Karlsson B., Andréasson L. E., Aasa R., Vänngård T., Malmström B. G. A new copper(II) electron paramagnetic resonance signal in two laccases and in cytochrome c oxidase. J Biol Chem. 1980 Jun 10;255(11):5000–5003. [PubMed] [Google Scholar]
- Richardson J., Thomas K. A., Rubin B. H., Richardson D. C. Crystal structure of bovine Cu,Zn superoxide dismutase at 3 A resolution: chain tracing and metal ligands. Proc Natl Acad Sci U S A. 1975 Apr;72(4):1349–1353. doi: 10.1073/pnas.72.4.1349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryden L., Lundgren J. O. On the evolution of blue proteins. Biochimie. 1979;61(7):781–790. doi: 10.1016/s0300-9084(79)80272-2. [DOI] [PubMed] [Google Scholar]
- Steffens G. J., Buse G. Studies on cytochrome c oxidase, IV[1--3]. Primary structure and function of subunit II. Hoppe Seylers Z Physiol Chem. 1979 Apr;360(4):613–619. [PubMed] [Google Scholar]
- Steinman H. M., Naik V. R., Abernethy J. L., Hill R. L. Bovine erythrocyte superoxide dismutase. Complete amino acid sequence. J Biol Chem. 1974 Nov 25;249(22):7326–7338. [PubMed] [Google Scholar]
- Steinman H. M. The amino acid sequence of copper-zinc superoxide dismutase from bakers' yeast. J Biol Chem. 1980 Jul 25;255(14):6758–6765. [PubMed] [Google Scholar]
- Wu T. T., Fitch W. M., Margoliash E. The information content of protein amino acid sequences. Annu Rev Biochem. 1974;43(0):539–566. doi: 10.1146/annurev.bi.43.070174.002543. [DOI] [PubMed] [Google Scholar]