Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 May;78(5):2898–2902. doi: 10.1073/pnas.78.5.2898

Anti-Rho(D) IgG binds to band 3 glycoprotein of the human erythrocyte membrane.

E J Victoria, L C Mahan, S P Masouredis
PMCID: PMC319466  PMID: 6789325

Abstract

Alkali-extracted erythrocyte ghost membranes from Rho(D)-positive and Rho(D)-negative donors were incubated with human immune anti-Rho(D) IgG and nonimmune IgG. After sensitization with IgG, the integral membrane proteins were solubilized in Brij 36T nonionic detergent and chromatographed by gel filtration. There was a distinct resolution of IgG into free and membrane-complexed forms. The IgG-complexed membrane proteins were isolated by the use of a staphylococcal protein A affinity support. The protein A-bound complexes were examined for polypeptide composition by gel electrophoresis after elution. Only Rho(D)-positive membrane proteins incubated with immune anti-Rho(D) IgG revealed intact band 3. Control Rh-negative membrane proteins that had reacted with immune anti-Rho(D) IgG and the Rh-positive membranes that had reacted with nonimmune IgG showed only low molecular weight fragments of band 3 that bound nonspecifically to IgG. Arguments are presented supporting a band 3 localization for the Rh antigen.

Full text

PDF
2898

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Dorst H. J., Schubert D. Self-association of band-protein from human erythrocyte membranes in aqueous solutions. Hoppe Seylers Z Physiol Chem. 1979 Nov;360(11):1605–1618. doi: 10.1515/bchm2.1979.360.2.1605. [DOI] [PubMed] [Google Scholar]
  2. England B. J., Gunn R. B., Steck T. L. An immunological study of band 3, the anion transport protein of the human red blood cell membrane. Biochim Biophys Acta. 1980 May 29;623(1):171–182. doi: 10.1016/0005-2795(80)90019-7. [DOI] [PubMed] [Google Scholar]
  3. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  4. Folkerd E. J., Ellory J. C., Hughes-Jones N. C. A molecular size determination of Rh(D) antigen by radiation inactivation. Immunochemistry. 1977 Jul;14(7):529–531. doi: 10.1016/0019-2791(77)90307-x. [DOI] [PubMed] [Google Scholar]
  5. GREEN F. A. STUDIES ON THE RH (D) ANTIGEN. Vox Sang. 1965 Jan-Feb;10:32–53. doi: 10.1111/j.1423-0410.1965.tb04317.x. [DOI] [PubMed] [Google Scholar]
  6. Golovtchenko-Matsumoto A. M., Osawa T. Heterogeneity of Band 3, the major intrinsic protein of human erythrocyte membranes. Studies by crossed immunoelectrophoresis and crossed immuno-affinoelectrophoresis. J Biochem. 1980 Mar;87(3):847–854. doi: 10.1093/oxfordjournals.jbchem.a132815. [DOI] [PubMed] [Google Scholar]
  7. Green F. A. Erythrocyte membrane lipids and Rh antigen activity. J Biol Chem. 1972 Feb 10;247(3):881–887. [PubMed] [Google Scholar]
  8. HELMKAMP R. W., GOODLAND R. L., BALE W. F., SPAR I. L., MUTSCHLER L. E. High specific activity iodination of gamma-globulin with iodine-131 monochloride. Cancer Res. 1960 Nov;20:1495–1500. [PubMed] [Google Scholar]
  9. Hughes-Jones N. C., Gardner B., Lincoln P. J. Observations of the number of available c,D, and E antigen sites on red cells. Vox Sang. 1971 Sep;21(3):210–216. doi: 10.1111/j.1423-0410.1971.tb00578.x. [DOI] [PubMed] [Google Scholar]
  10. Kepner G. R., Macey R. I. Membrane enzyme systems. Molecular size determinations by radiation inactivation. Biochim Biophys Acta. 1968 Sep 17;163(2):188–203. doi: 10.1016/0005-2736(68)90097-7. [DOI] [PubMed] [Google Scholar]
  11. Kessler S. W. Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. J Immunol. 1975 Dec;115(6):1617–1624. [PubMed] [Google Scholar]
  12. LEVY H. B., SOBER H. A. A simple chromatographic method for preparation of gamma globulin. Proc Soc Exp Biol Med. 1960 Jan;103:250–252. doi: 10.3181/00379727-103-25476. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Litten J., Culpepper R., Bakerman S. Studies on the characterization of the Rho(D) antigen. Biochim Biophys Acta. 1978 Oct 3;543(2):226–234. doi: 10.1016/0304-4165(78)90067-3. [DOI] [PubMed] [Google Scholar]
  15. Lorusso D. J., Binette J. P., Green F. A. The Rh antigen system and disaggregated human erythrocyte membranes. Immunochemistry. 1977 Jul;14(7):503–508. doi: 10.1016/0019-2791(77)90303-2. [DOI] [PubMed] [Google Scholar]
  16. Lorusso D. J., Green F. A. Reconstitution of Rh (D) antigen activity from human erythrocyte membranes solubilized by deoxycholate. Science. 1975 Apr 4;188(4183):66–67. doi: 10.1126/science.803714. [DOI] [PubMed] [Google Scholar]
  17. Lutz H. U., von Däniken A., Semenza G., Bächi T. Glycophorin-enriched vesicles obtained by a selective extraction of human erythrocyte membranes with a non-ionic detergent. Biochim Biophys Acta. 1979 Apr 4;552(2):262–280. doi: 10.1016/0005-2736(79)90282-7. [DOI] [PubMed] [Google Scholar]
  18. Marchesi V. T. Recent membrane research and its implications for clinical medicine. Annu Rev Med. 1978;29:593–603. doi: 10.1146/annurev.me.29.020178.003113. [DOI] [PubMed] [Google Scholar]
  19. Marzullo G., Hine B. Opiate receptor function may be modulated through an oxidation-reduction mechanism. Science. 1980 Jun 6;208(4448):1171–1173. doi: 10.1126/science.6246583. [DOI] [PubMed] [Google Scholar]
  20. Masouredis S. P., Sudora E. J., Mahan L., Victoria E. J. Antigen site densities and ultrastructural distribution patterns of red cell Rh antigens. Transfusion. 1976 Mar-Apr;16(2):94–106. doi: 10.1046/j.1537-2995.1976.16276155121.x. [DOI] [PubMed] [Google Scholar]
  21. Massaqué J., Czech M. P. Multiple redox forms of the insulin receptor in native liver membranes. Diabetes. 1980 Nov;29(11):945–947. doi: 10.2337/diab.29.11.945. [DOI] [PubMed] [Google Scholar]
  22. Nigg E. A., Cherry R. J. Anchorage of a band 3 population at the erythrocyte cytoplasmic membrane surface: protein rotational diffusion measurements. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4702–4706. doi: 10.1073/pnas.77.8.4702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nigg E., Cherry R. J. Dimeric association of band 3 in the erythrocyte membrane demonstrated by protein diffusion measurements. Nature. 1979 Feb 8;277(5696):493–494. doi: 10.1038/277493a0. [DOI] [PubMed] [Google Scholar]
  24. Pinder J. C., Phethean J., Gratzer W. B. Spectrin in primitive erythrocytes. FEBS Lett. 1978 Aug 15;92(2):278–282. doi: 10.1016/0014-5793(78)80770-4. [DOI] [PubMed] [Google Scholar]
  25. Plapp F. V., Kowalski M. M., Tilzer L., Brown P. J., Evans B. J., Chiga M. Partial purification of Rho (D) antigen from Rh positive and negative erythrocytes. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2964–2968. doi: 10.1073/pnas.76.6.2964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Pricam C., Fisher K. A., Friend D. S. Intramembranous particle distribution in human erythrocytes: effects of lysis, glutaraldehyde, and poly-L-lysine. Anat Rec. 1977 Dec;189(4):595–607. doi: 10.1002/ar.1091890405. [DOI] [PubMed] [Google Scholar]
  27. Raftery M. A., Hunkapiller M. W., Strader C. D., Hood L. E. Acetylcholine receptor: complex of homologous subunits. Science. 1980 Jun 27;208(4451):1454–1456. doi: 10.1126/science.7384786. [DOI] [PubMed] [Google Scholar]
  28. Shotton D., Thompson K., Wofsy L., Branton D. Appearance and distribution of surface proteins of the human erythrocyte membrane. An electron microscope and immunochemical labeling study. J Cell Biol. 1978 Feb;76(2):512–531. doi: 10.1083/jcb.76.2.512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singer S. J. The molecular organization of membranes. Annu Rev Biochem. 1974;43(0):805–833. doi: 10.1146/annurev.bi.43.070174.004105. [DOI] [PubMed] [Google Scholar]
  30. Steck T. L. The band 3 protein of the human red cell membrane: a review. J Supramol Struct. 1978;8(3):311–324. doi: 10.1002/jss.400080309. [DOI] [PubMed] [Google Scholar]
  31. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Steck T. L., Yu J. Selective solubilization of proteins from red blood cell membranes by protein perturbants. J Supramol Struct. 1973;1(3):220–232. doi: 10.1002/jss.400010307. [DOI] [PubMed] [Google Scholar]
  33. Victoria E. J., Muchmore E. A., Sudora E. J., Masouredis S. P. The role of antigen mobility in anti-Rh0(D)-induced agglutination. J Clin Invest. 1975 Aug;56(2):292–301. doi: 10.1172/JCI108093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yu J., Branton D. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: effects of spectrin-actin association. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3891–3895. doi: 10.1073/pnas.73.11.3891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Zweig M., Heilman C. J., Jr, Hampar B. Identification of disulfide-linked protein complexes in the nucleocapsids of herpes simplex virus type 2. Virology. 1979 Apr 30;94(2):442–450. doi: 10.1016/0042-6822(79)90474-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES