Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 May;78(5):3000–3004. doi: 10.1073/pnas.78.5.3000

Hormonal regulation of cytodifferentiation and intercellular communication in cultured granulosa cells.

A Amsterdam, M Knecht, K J Catt
PMCID: PMC319487  PMID: 6265930

Abstract

Granulosa cells from immature hypophysectomized diethylstilbestrol-treated rats displayed pronounced intracellular and intercellular changes after 48 hr of exposure to follicle-stimulating hormone (FSH) in vitro. As determined by light and electron microscopy, most of the FSH-treated cells became highly aggregated and grew in multilayered clusters. Numerous gap junctions were seen between cells, indicating the presence of significant intercellular communication. Microvilli densely covered the surface of the hormone-stimulated cells, which contained enlarged mitochondria with convoluted cristae, characteristic of steroidogenic cells. Luteinizing hormone receptors, identified by autoradiography with 125I-labeled human chorionic gonadotropin, were mainly associated with aggregated cells, whereas single cells were usually free of the labeled hormone. Addition of a gonadotropin-releasing hormone agonist prevented the appearance of luteinizing hormone receptors and markedly impaired cyclic AMP and progesterone production, as well as the morphological changes induced by FSH. The majority of the granulosa cells grown in the absence of either hormone assumed a flattened, and smooth shape and grew primarily in monolayers. The maintenance of cellular aggregation and intercellular communication by FSH, and its inhibition by gonadotropin-releasing hormone, may play an important role in the cytodifferentiation of ovarian granulosa cells.

Full text

PDF
3000

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertini D. F., Anderson E. The appearance and structure of intercellular connections during the ontogeny of the rabbit ovarian follicle with particular reference to gap junctions. J Cell Biol. 1974 Oct;63(1):234–250. doi: 10.1083/jcb.63.1.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amsterdam A., Josephs R., Lieberman M. E., Lindner H. R. Organization of intramembrane particles in freeze-cleaved gap junctions of rat graafian rollicles: optical-diffraction analysis. J Cell Sci. 1976 Jun;21(1):93–105. doi: 10.1242/jcs.21.1.93. [DOI] [PubMed] [Google Scholar]
  3. Amsterdam A., Koch Y., Lieberman M. E., Lindner H. R. Distribution of binding sites for human chorionic gonadotropin in the preovulatory follicle of the rat. J Cell Biol. 1975 Dec;67(3):894–900. doi: 10.1083/jcb.67.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Amsterdam A., Nimrod A., Lamprecht S. A., Burstein Y., Lindner H. R. Internalization and degradation of receptor-bound hCG in granulosa cell cultures. Am J Physiol. 1979 Feb;236(2):E129–E138. doi: 10.1152/ajpendo.1979.236.2.E129. [DOI] [PubMed] [Google Scholar]
  5. Anderson W., Kang Y. H., Perotti M. E., Bramley T. A., Ryan R. J. Interactions of gonadotropins with corpus luteum membranes. III. Electron microscopic localization of [125I]-hCG binding to sensitive and desensitized ovaries seven days after PMSG-hCG. Biol Reprod. 1979 Mar;20(2):362–376. doi: 10.1095/biolreprod20.2.362. [DOI] [PubMed] [Google Scholar]
  6. Campbell K. L. Ovarian granulosa cells isolated with EGTA and hypertonic sucrose: cellular integrity and function. Biol Reprod. 1979 Nov;21(4):773–786. doi: 10.1095/biolreprod21.4.773. [DOI] [PubMed] [Google Scholar]
  7. Centola G. M. Correlation of cell surface features with progesterone secretion in rat granulosa cell cultures. Biol Reprod. 1979 Jun;20(5):1067–1084. doi: 10.1095/biolreprod20.5.1067. [DOI] [PubMed] [Google Scholar]
  8. Chang S. C., Anderson W., Lewis J. C., Ryan R. J., Kang Y. K. The porcine ovarian follicle. II. Electron microscopic study of surface features of granulosa cells at different stages of development. Biol Reprod. 1977 Apr;16(3):349–357. doi: 10.1095/biolreprod16.3.349. [DOI] [PubMed] [Google Scholar]
  9. Channing C. P., Kammerman S. Characteristics of gonadotropin receptors of porcine granulosa cells during follicle maturation. Endocrinology. 1973 Feb;92(2):531–540. doi: 10.1210/endo-92-2-531. [DOI] [PubMed] [Google Scholar]
  10. Clayton R. N., Harwood J. P., Catt K. J. Gonadotropin-releasing hormone analogue binds to luteal cells and inhibits progesterone production. Nature. 1979 Nov 1;282(5734):90–92. doi: 10.1038/282090a0. [DOI] [PubMed] [Google Scholar]
  11. Erickson G. F., Wang C., Hsueh A. J. FSH induction of functional LH receptors in granulosa cells cultured in a chemically defined medium. Nature. 1979 May 24;279(5711):336–338. doi: 10.1038/279336a0. [DOI] [PubMed] [Google Scholar]
  12. Goodenough D. A., Gilula N. B. The splitting of hepatocyte gap junctions and zonulae occludentes with hypertonic disaccharides. J Cell Biol. 1974 Jun;61(3):575–590. doi: 10.1083/jcb.61.3.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Harwood J. P., Clayton R. N., Catt K. J. Ovarian gonadotropin-releasing hormone receptors. I. Properties and inhibition of luteal cell function. Endocrinology. 1980 Aug;107(2):407–413. doi: 10.1210/endo-107-2-407. [DOI] [PubMed] [Google Scholar]
  14. Harwood J. P., Clayton R. N., Chen T. T., Knox G., Catt K. J. Ovarian gonadotropin-releasing hormone receptors. II. Regulation and effects on ovarian development. Endocrinology. 1980 Aug;107(2):414–421. doi: 10.1210/endo-107-2-414. [DOI] [PubMed] [Google Scholar]
  15. Hillier S. G., Knazek R. A., Ross G. T. Androgenic stimulation of progesterone production by granulosa cells from preantral ovarian follicles: further in vitro studies using replicate cell cultures. Endocrinology. 1977 Jun;100(6):1539–1549. doi: 10.1210/endo-100-6-1539. [DOI] [PubMed] [Google Scholar]
  16. Hillier S. G., Zeleznik A. J., Knazek R. A., Ross G. T. Hormonal regulation of preovulatory follicle maturation in the rat. J Reprod Fertil. 1980 Sep;60(1):219–229. doi: 10.1530/jrf.0.0600219. [DOI] [PubMed] [Google Scholar]
  17. Hsueh A. J., Erickson G. F. Extrapituitary action of gonadotropin-releasing hormone: direct inhibition ovarian steroidogenesis. Science. 1979 May 25;204(4395):854–855. doi: 10.1126/science.375393. [DOI] [PubMed] [Google Scholar]
  18. Hsueh A. J., Wang C., Erickson G. F. Direct inhibitory effect of gonadotropin-releasing hormone upon follicle-stimulating hormone induction of luteinizing hormone receptor and aromatase activity in rat granulosa cells. Endocrinology. 1980 Jun;106(6):1697–1705. doi: 10.1210/endo-106-6-1697. [DOI] [PubMed] [Google Scholar]
  19. Knecht M., Katz M. S., Catt K. J. Gonadotropin-releasing hormone inhibits cyclic nucleotide accumulation in cultured rat granulosa cells. J Biol Chem. 1981 Jan 10;256(1):34–36. [PubMed] [Google Scholar]
  20. Lawrence T. S., Ginzberg R. D., Gilula N. B., Beers W. H. Hormonally induced cell shape changes in cultured rat ovarian granulosa cells. J Cell Biol. 1979 Jan;80(1):21–36. doi: 10.1083/jcb.80.1.21. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Markkanen S. O., Rajaniemi H. J. Role of internalization and degradation in the removal of receptor-bound human chorionic gonadotropin in rat luteal cells in vivo. Endocrinology. 1980 Oct;107(4):1153–1161. doi: 10.1210/endo-107-4-1153. [DOI] [PubMed] [Google Scholar]
  22. Merk F. B., Botticelli C. R., Albright J. T. An intercellular response to estrogen by granulosa cells in the rat ovary; an electron microscope study. Endocrinology. 1972 Apr;90(4):992–1007. doi: 10.1210/endo-90-4-992. [DOI] [PubMed] [Google Scholar]
  23. Reddy P. V., Azhar S., Menon K. M. Multiple inhibitory actions of luteinizing hormone-releasing hormone agonist on luteinizing hormone/human chorionic gonadotropin receptor-mediated ovarian responses. Endocrinology. 1980 Oct;107(4):930–936. doi: 10.1210/endo-107-4-930. [DOI] [PubMed] [Google Scholar]
  24. Richards J. S., Midgley A. R., Jr Protein hormone action: a key to understanding ovarian follicular and luteal cell development. Biol Reprod. 1976 Feb;14(1):82–94. doi: 10.1095/biolreprod14.1.82. [DOI] [PubMed] [Google Scholar]
  25. Schaefer F. V., Custer R. P., Sorof S. Induction of abnormal development and differentiation in cultured mammary glands by cyclic adenine nucleotide and prostaglandins. Nature. 1980 Aug 21;286(5775):807–810. doi: 10.1038/286807a0. [DOI] [PubMed] [Google Scholar]
  26. Sheridan J. D. Dye movement and low-resistance junctions between reaggregated embryonic cells. Dev Biol. 1971 Dec;26(4):627–636. doi: 10.1016/0012-1606(71)90145-x. [DOI] [PubMed] [Google Scholar]
  27. Strickland S., Smith K. K., Marotti K. R. Hormonal induction of differentiation in teratocarcinoma stem cells: generation of parietal endoderm by retinoic acid and dibutyryl cAMP. Cell. 1980 Sep;21(2):347–355. doi: 10.1016/0092-8674(80)90471-7. [DOI] [PubMed] [Google Scholar]
  28. Thomopoulos P., Kosmakos F. C., Pastan I., Lovelace E. Cyclic AMP increases the concentration of insulin receptors in cultured fibroblasts and lymphocytes. Biochem Biophys Res Commun. 1977 Mar 21;75(2):246–252. doi: 10.1016/0006-291x(77)91035-x. [DOI] [PubMed] [Google Scholar]
  29. VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zeleznik A. J., Midgley A. R., Jr, Reichert L. E., Jr Granulosa cell maturation in the rat: increased binding of human chorionic gonadotropin following treatment with follicle-stimulating hormone in vivo. Endocrinology. 1974 Sep;95(3):818–825. doi: 10.1210/endo-95-3-818. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES