Abstract
We have developed an in vitro system, using embryonic chicken tibiae grown in a serum-free medium, which exhibits simultaneous bone formation and resorption. Tibiae from 8-day embryos increased in mean (+/- SD) length (4.0 +/- 0.4 to 11.0 +/- 0.3 mm) and dry weight (0.30 +/- 0.04 to 0.84 +/- 0.04 mg) during 12 days in vitro. There was increased incorporation of [3H]proline into hydroxyproline (120 +/- 20 to 340 +/- 20 cpm/mg of bone per 24 hr) as a measure of collagen synthesis, as well as a 62 +/- 5% increase in total calcium and 45Ca taken up as an indication of active mineralization. A physiologic concentration (1 pM) of parathyroid hormone was found to stimulate bone resorption over control levels in this system. Parathyroid hormone stimulated the release of [3H]hydroxyproline from the bone shafts but not from the cartilage ends, indicating the specificity of the response. With 1 pM parathyroid hormone we observed an acute inhibition of bone formation, followed (after 12-16 hr) by a chronic stimulation of bone formation during the 12-day incubation. Both mineral uptake and matrix formation were enhanced at approximately the same rate during the 12-day incubation. The chronic enhancement of formation required parathyroid hormone only for the initial 8-10 hr of incubation. These results could be explained by the production or release of a factor from bone to stimulate formation in response to the acute increase in resorption--a "coupling factor." Indeed, dialyzed culture medium conditioned by actively resorbing bones stimulated bone formation over controls when added to organ cultures at a 1:20 dilution. The factor is larger than 12,000 daltons as determined by dialysis. The factor is specific for the bone shaft and did not affect the cartilage ends.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BIGGERS J. D., WEBB M., PARKER R. C., HEALY G. M. Cultivation of embryonic chick bones on chemically defined media. Nature. 1957 Oct 26;180(4591):825–828. doi: 10.1038/180825a0. [DOI] [PubMed] [Google Scholar]
- Baylink D. J., Liu C. C. The regulation of endosteal bone volume. J Periodontol. 1979 Apr;50(4 Spec No):43–49. doi: 10.1902/jop.1979.50.4s.43. [DOI] [PubMed] [Google Scholar]
- Bingham P. J., Raisz L. G. Bone growth in organ culture: effects of phosphate and other nutrients on bone and cartilage. Calcif Tissue Res. 1974;14(1):31–48. doi: 10.1007/BF02060281. [DOI] [PubMed] [Google Scholar]
- Brand J. S., Raisz L. G. Effects of thyrocalcitonin and phosphate ion on the parathyroid hormone stimulated resorption of bone. Endocrinology. 1972 Feb;90(2):479–487. doi: 10.1210/endo-90-2-479. [DOI] [PubMed] [Google Scholar]
- CHEN J. M. The cultivation in fluid medium of organised liver, pancreas and other tissues of foetal rats. Exp Cell Res. 1954 Nov;7(2):518–529. doi: 10.1016/s0014-4827(54)80096-6. [DOI] [PubMed] [Google Scholar]
- Chen T. L., Raisz L. G. The effects of ascorbic acid deficiency on calcium and collagen metabolism in cultured fetal rat bones. Calcif Tissue Res. 1975;17(2):113–127. doi: 10.1007/BF02547284. [DOI] [PubMed] [Google Scholar]
- Dietrich J. W., Canalis E. M., Maina D. M., Raisz L. G. Hormonal control of bone collagen synthesis in vitro: effects of parathyroid hormone and calcitonin. Endocrinology. 1976 Apr;98(4):943–949. doi: 10.1210/endo-98-4-943. [DOI] [PubMed] [Google Scholar]
- Gaillard P. J., Herrmann-Erlee M. P., Hekkelman J. W., Burger E. H., Nijweide P. J. Skeletal tissue in culture. Hormonal regulation of metabolism and development. Clin Orthop Relat Res. 1979 Jul-Aug;(142):196–214. [PubMed] [Google Scholar]
- Harris W. H., Heaney R. P. Skeletal renewal and metabolic bone disease. N Engl J Med. 1969 Jan 30;280(5):253–contd. doi: 10.1056/NEJM196901302800507. [DOI] [PubMed] [Google Scholar]
- Herrmann-Erlee M. P., Heersche J. N., Hekkelman J. W., Gaillard P. J., Tregear G. W., Parsons J. A., Potts J. T., Jr Effects of bone in vitro of bovine parathyroid hormone and synthetic fragments representing residues 1-34, 2-34 and 3-34. Endocr Res Commun. 1976;3(1):21–35. doi: 10.3109/07435807609057738. [DOI] [PubMed] [Google Scholar]
- Jeffrey J. J., Martin G. R. The role of ascorbic acid in the biosynthesis of collagen. I. Ascorbic acid requirement by embryonic chick tibia in tissue culture. Biochim Biophys Acta. 1966 Jun 29;121(2):269–280. doi: 10.1016/0304-4165(66)90116-4. [DOI] [PubMed] [Google Scholar]
- Kalu D. N., Doyle F. H., Pennock J., Foster G. V. Parathyroid hormone and experimental osteosclerosis. Lancet. 1970 Jun 27;1(7661):1363–1366. doi: 10.1016/s0140-6736(70)91271-7. [DOI] [PubMed] [Google Scholar]
- McGuire J. L., Marks S. C., Jr The effects of parathyroid hormone on bone cell structure and function. Clin Orthop Relat Res. 1974 May;(100):392–405. [PubMed] [Google Scholar]
- Puzas J. E., Drivdahl R. H., Howard G. A., Baylink D. J. Endogenous inhibitor of bone cell proliferation. Proc Soc Exp Biol Med. 1981 Jan;166(1):113–122. doi: 10.3181/00379727-166-41032. [DOI] [PubMed] [Google Scholar]
- Raisz L. G., Dietrich J. W., Canalis E. M. Factors influencing bone formation in organ culture. Isr J Med Sci. 1976 Feb;12(2):108–114. [PubMed] [Google Scholar]
- Raisz L. G., Lorenzo J., Gworek S., Kream B., Rosenblatt M. Comparison of the effects of a potent synthetic analog of bovine parathyroid hormone with native bPTH-(1-84) and synthetic bPTH-(1-34) on bone resorption and collagen synthesis. Calcif Tissue Int. 1979;29(3):215–218. doi: 10.1007/BF02408083. [DOI] [PubMed] [Google Scholar]
- Raisz L. G., Trummel C. L., Simmons H. Induction of bone resorption in tissue culture. Prolonged response after brief exposure to parathyroid hormone or 25-hydroxycholecalciferol. Endocrinology. 1972 Mar;90(3):744–751. doi: 10.1210/endo-90-3-744. [DOI] [PubMed] [Google Scholar]
- Ramp W. K., Neuman W. F. Some factors affecting mineralization of bone in tissue culture. Am J Physiol. 1971 Jan;220(1):270–274. doi: 10.1152/ajplegacy.1971.220.1.270. [DOI] [PubMed] [Google Scholar]
- Schwartz P. L., Wettehall R. E., Bornstein J. The growth of newborn rat tibiae in a continuous-flow organ culture system. J Exp Zool. 1968 Aug;168(4):517–530. doi: 10.1002/jez.1401680412. [DOI] [PubMed] [Google Scholar]
- Thompson E. R., Baylink D. J., Wergedal J. E. Increases in number and size of osteoclasts in response to calcium or phosphorus deficiency in the rat. Endocrinology. 1975 Aug;97(2):283–289. doi: 10.1210/endo-97-2-283. [DOI] [PubMed] [Google Scholar]
