Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jun;78(6):3323–3327. doi: 10.1073/pnas.78.6.3323

Complete nucleotide sequence of minicircle kinetoplast DNA from Trypanosoma equiperdum.

M Barrois, G Riou, F Galibert
PMCID: PMC319560  PMID: 6267582

Abstract

The kinetoplast DNA of Trypanosoma equiperdum is composed of about 3000 supercoiled minicircles of 1000 base pairs and about 50 supercoiled maxicircles of 23,000 base pairs topologically interlocked so as to form a compact network. Minicircles of T. equiperdum, which are homogeneous in base sequence, were purified by equilibrium CsCl centrifugation and used as starting material for DNA sequence analysis. One minicircle is composed of 1012 base pairs and has an adenine.thymine base pair content of 72.8%. The termination codons are uniformly distributed along the molecule and restrict the coding potentiality of the molecule to oligopeptides of about 20 amino acids. The molecule contains three dyad symmetries and a sequence of 12 nucleotides is repeated six times. We also noted the presence of a region of about 130 base pairs that is almost perfectly homologous with that of the minicircles from the closely related species T. brucei.

Full text

PDF
3323

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker C. C., Herisse J., Courtois G., Galibert F., Ziff E. Messenger RNA for the Ad2 DNA binding protein: DNA sequences encoding the first leader and heterogenity at the mRNA 5' end. Cell. 1979 Oct;18(2):569–580. doi: 10.1016/0092-8674(79)90073-4. [DOI] [PubMed] [Google Scholar]
  2. Barrell B. G., Bankier A. T., Drouin J. A different genetic code in human mitochondria. Nature. 1979 Nov 8;282(5735):189–194. doi: 10.1038/282189a0. [DOI] [PubMed] [Google Scholar]
  3. Brack C., Delain E., Riou G. Replicating, convalently closed, circular DNA from kinetoplasts of Trypanosoma cruzi. Proc Natl Acad Sci U S A. 1972 Jun;69(6):1642–1646. doi: 10.1073/pnas.69.6.1642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capbern A., Giroud C., Baltz T., Mattern P. Trypanosoma equiperdum: etude des variations antigéniques au cours de la trypanosomose experimentale du lapin. Exp Parasitol. 1977 Jun;42(1):6–13. doi: 10.1016/0014-4894(77)90055-8. [DOI] [PubMed] [Google Scholar]
  5. Chen K. K., Donelson J. E. Sequences of two kinetoplast DNA minicircles of Tryptanosoma brucei. Proc Natl Acad Sci U S A. 1980 May;77(5):2445–2449. doi: 10.1073/pnas.77.5.2445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Denniston-Thompson K., Moore D. D., Kruger K. E., Furth M. E., Blattner F. R. Physical structure of the replication origin of bacteriophage lambda. Science. 1977 Dec 9;198(4321):1051–1056. doi: 10.1126/science.929187. [DOI] [PubMed] [Google Scholar]
  7. Donelson J. E., Majiwa P. A., Williams R. O. Kinetoplast DNA minicircles of Trypanosoma brucei share regions of sequence homology. Plasmid. 1979 Oct;2(4):572–588. doi: 10.1016/0147-619x(79)90055-6. [DOI] [PubMed] [Google Scholar]
  8. Fouts D. L., Wolstenholme D. R. Evidence for a partial RNA transcript of the small circular component of kinetoplast DNA of Crithidia acanthocephali. Nucleic Acids Res. 1979 Aug 24;6(12):3785–3804. doi: 10.1093/nar/6.12.3785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fox T. D. Five TGA "stop" codons occur within the translated sequence of the yeast mitochondrial gene for cytochrome c oxidase subunit II. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6534–6538. doi: 10.1073/pnas.76.12.6534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frasch A. C., Hajduk S. L., Hoeijmakers J. H., Borst P., Brunel E., Davison J. The kinetoplast DNA of Trypanosoma equiperdum. Biochim Biophys Acta. 1980 May 30;607(3):397–410. doi: 10.1016/0005-2787(80)90150-1. [DOI] [PubMed] [Google Scholar]
  11. Galibert F., Hérissé J., Courtois G. Nucleotide sequence of the EcoRI-F fragment of adenovirus 2 genome. Gene. 1979 May;6(1):1–22. doi: 10.1016/0378-1119(79)90081-7. [DOI] [PubMed] [Google Scholar]
  12. Kroeker W. D., Laskowski M., Sr Polynucleotide kinase: functional purification and use in the direct kinetic measurement of single- and double- strand cleavages of DNA by restriction and other endonucleases of limited action. Anal Biochem. 1977 May 1;79(1-2):63–72. doi: 10.1016/0003-2697(77)90379-7. [DOI] [PubMed] [Google Scholar]
  13. Lanham S. M., Godfrey D. G. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Exp Parasitol. 1970 Dec;28(3):521–534. doi: 10.1016/0014-4894(70)90120-7. [DOI] [PubMed] [Google Scholar]
  14. Macino G., Coruzzi G., Nobrega F. G., Li M., Tzagoloff A. Use of the UGA terminator as a tryptophan codon in yeast mitochondria. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3784–3785. doi: 10.1073/pnas.76.8.3784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  16. Riou G. F., Belnat P., Benard J. Complete loss of kinetoplast DNA sequences induced by ethidium bromide or by acriflavine in Trypanosoma equiperdum. J Biol Chem. 1980 Jun 10;255(11):5141–5144. [PubMed] [Google Scholar]
  17. Riou G. F., Gutteridge W. E. Comparative study of kinetoplast DNA in culture, blood and intracellular forms of Trypanosoma cruzi. Biochimie. 1978;60(4):365–379. doi: 10.1016/s0300-9084(78)80670-1. [DOI] [PubMed] [Google Scholar]
  18. Riou G. F., Saucier J. M. Characterization of the molecular components in kinetoplast-mitochondrial DNA of Trypanosoma equiperdum. Comparative study of the dyskinetoplastic and wild strains. J Cell Biol. 1979 Jul;82(1):248–263. doi: 10.1083/jcb.82.1.248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Riou G. F., Yot P. Heterogeneity of the kinetoplast DNA molecules of Trypanosoma cruzi. Biochemistry. 1977 May 31;16(11):2390–2396. doi: 10.1021/bi00630a013. [DOI] [PubMed] [Google Scholar]
  20. Riou G., Baltz T., Gabillot M., Pautrizel R. Absence of kinetoplast DNA in a late antigenic variant of Trypanosoma equiperdum. Mol Biochem Parasitol. 1980 Apr;1(2):97–105. doi: 10.1016/0166-6851(80)90004-3. [DOI] [PubMed] [Google Scholar]
  21. Riou G., Barrois M. Restriction cleavage map of kinetoplast DNA minicircles from Trypanosoma equiperdum. Biochem Biophys Res Commun. 1979 Sep 27;90(2):405–409. doi: 10.1016/0006-291x(79)91249-x. [DOI] [PubMed] [Google Scholar]
  22. Riou G., Benard J. Berenil induces the complete loss of kinetoblast DNA sequences in Trypanosoma equiperdum. Biochem Biophys Res Commun. 1980 Sep 16;96(1):350–354. doi: 10.1016/0006-291x(80)91221-8. [DOI] [PubMed] [Google Scholar]
  23. Riou G., Yot P. Etude de l'Adn kinétoplastique de Trypansoma cruzi à l'aide d'endonucléases de restriction. C R Acad Sci Hebd Seances Acad Sci D. 1975 Jun 16;280(23):2701–2704. [PubMed] [Google Scholar]
  24. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  25. Simpson L., Simpson A. G. Kinetoplast RNA of Leishmania tarentolae. Cell. 1978 May;14(1):169–178. doi: 10.1016/0092-8674(78)90311-2. [DOI] [PubMed] [Google Scholar]
  26. Subramanian K. N., Dhar R., Weissman S. M. Nucleotide sequence of a fragment of SV40 DNA that contains the origin of DNA replication and specifies the 5' ends of "early" and "late" viral RNA. III. Construction of the total sequence of EcoRII-G fragment of SV40 DNA. J Biol Chem. 1977 Jan 10;252(1):355–367. [PubMed] [Google Scholar]
  27. Vickerman K. Antigenic variation in trypanosomes. Nature. 1978 Jun 22;273(5664):613–617. doi: 10.1038/273613a0. [DOI] [PubMed] [Google Scholar]
  28. Wang J. C. The degree of unwinding of the DNA helix by ethidium. I. Titration of twisted PM2 DNA molecules in alkaline cesium chloride density gradients. J Mol Biol. 1974 Nov 15;89(4):783–801. doi: 10.1016/0022-2836(74)90053-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES