Abstract
Acridine dyes and other DNA-intercalating agents such as ethidium bromide, theophylline, and caffeine induce luminescence in dark variants (K variants) different luminous species of bacteria, as well as in their wild-type luminous cells, prior to induction. The increase in luminescence appears 10-20 min after addition of these agents and is inhibited by chloramphenicol or rifampicin. Addition of these agents affects the synthesis of both luciferase and aldehyde-synthesizing enzymes. It is hypothesized that these agents, through their intercalation into DNA, cause configurational changes resulting in derepressed transcription of the luminescence operon.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Conde F., Del Campo F. F., Ramirez J. M. Cyclic adenosine-3', 5'-monophosphate and the inhibition of ribonucleic acid synthesis by proflavine. FEBS Lett. 1971 Aug 15;16(3):156–158. doi: 10.1016/0014-5793(71)80120-5. [DOI] [PubMed] [Google Scholar]
- Hastings J. W., Nealson K. H. Bacterial bioluminescence. Annu Rev Microbiol. 1977;31:549–595. doi: 10.1146/annurev.mi.31.100177.003001. [DOI] [PubMed] [Google Scholar]
- Mitchell G. W., Hastings J. W. A stable, inexpensive, solid-state photomultiplier photometer. Anal Biochem. 1971 Jan;39(1):243–250. doi: 10.1016/0003-2697(71)90481-7. [DOI] [PubMed] [Google Scholar]
- Nasim A., Brychcy T. Genetic effects of acridine compounds. Mutat Res. 1979 Dec;65(4):261–288. doi: 10.1016/0165-1110(79)90005-8. [DOI] [PubMed] [Google Scholar]
- Nealson K. H. Autoinduction of bacterial luciferase. Occurrence, mechanism and significance. Arch Microbiol. 1977 Feb 4;112(1):73–79. doi: 10.1007/BF00446657. [DOI] [PubMed] [Google Scholar]
- Nealson K. H., Hastings J. W. Bacterial bioluminescence: its control and ecological significance. Microbiol Rev. 1979 Dec;43(4):496–518. doi: 10.1128/mr.43.4.496-518.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nealson K. H., Markovitz A. Mutant analysis and enzyme subunit complementation in bacterial bioluminescence in Photobacterium fischeri. J Bacteriol. 1970 Oct;104(1):300–312. doi: 10.1128/jb.104.1.300-312.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nealson K. H., Platt T., Hastings J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol. 1970 Oct;104(1):313–322. doi: 10.1128/jb.104.1.313-322.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sankaran L., Pogell B. M. Differential inhibition of catabolite-sensitive enzyme induction by intercalating dyes. Nat New Biol. 1973 Oct 31;245(148):257–260. doi: 10.1038/newbio245257a0. [DOI] [PubMed] [Google Scholar]
- Timson J. Caffeine. Mutat Res. 1977;47(1):1–52. doi: 10.1016/0165-1110(77)90016-1. [DOI] [PubMed] [Google Scholar]
- Ulitzur S., Weiser I., Yannai S. A new, sensitive and simple bioluminescence test for mutagenic compounds. Mutat Res. 1980 Apr;74(2):113–124. doi: 10.1016/0165-1161(80)90237-x. [DOI] [PubMed] [Google Scholar]
- Ulitzur S., Yashphe J. An adenosine 3',5'-monophosphate-requiring mutant of the luminous bacteria Beneckea harveyi. Biochim Biophys Acta. 1975 Oct 9;404(2):321–328. doi: 10.1016/0304-4165(75)90339-6. [DOI] [PubMed] [Google Scholar]
