Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jun;78(6):3441–3445. doi: 10.1073/pnas.78.6.3441

Gravitational field enhances permeability of biological membranes to sucrose: an experimental refutation of sucrose-space hypothesis.

V Sitaramam, M K Sarma
PMCID: PMC319584  PMID: 6943551

Abstract

Isotonic conditions for the integrity of subcellular organelles are shown to be remarkably influenced by the concentration of sucrose present during their isolation by centrifugation. Using the technique of enzyme osmometry, we show that the content of sucrose in synaptosomes reflects nearly total equilibration across the membrane during centrifugation, due to altered permeability of membranes. Presence of sucrose in the matrix space of mitochondria, as demonstrated by enzyme osmometry of matrix enzymes, indicates that the sucrose-space hypothesis is invalid.

Full text

PDF
3441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPELMANS F., DE DUVE C. Tissue fractionation studies. 3. Further observations on the binding of acid phosphatase by rat-liver particles. Biochem J. 1955 Mar;59(3):426–433. doi: 10.1042/bj0590426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Beaufay H., Jacques P., Baudhuin P., Sellinger O. Z., Berthet J., De Duve C. Tissue fractionation studies. 18. Resolution of mitochondrial fractions from rat liver into three distinct populations of cytoplasmic particles by means of density equilibration in various gradients. Biochem J. 1964 Jul;92(1):184–205. doi: 10.1042/bj0920184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carvalho C. A., Carvalho A. P. Effect of temperature and ionophores on the permeability of synaptosomes. J Neurochem. 1979 Jul;33(1):309–317. doi: 10.1111/j.1471-4159.1979.tb11734.x. [DOI] [PubMed] [Google Scholar]
  4. Cereijo-Santalo R. Osmotic pressure and ATPase activity of rat liver mitochondria. Arch Biochem Biophys. 1972 Sep;152(1):78–82. doi: 10.1016/0003-9861(72)90195-6. [DOI] [PubMed] [Google Scholar]
  5. DE ROBERTIS E., PELLEGRINO DE IRALDI A., RODRIGUEZ DE LORES GARNAIZ G., SALGANICOFF L. Cholinergic and non-cholinergic nerve endings in rat brain. I. Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. J Neurochem. 1962 Jan-Feb;9:23–35. doi: 10.1111/j.1471-4159.1962.tb07489.x. [DOI] [PubMed] [Google Scholar]
  6. De Gier J., Mandersloot J. G., Hupkes J. V., McElhaney R. N., Van Beek W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim Biophys Acta. 1971 Jun 1;233(3):610–618. doi: 10.1016/0005-2736(71)90160-x. [DOI] [PubMed] [Google Scholar]
  7. Hernández A. G., Suárez G., Roman H., Dawidowicz K. Protein synthesis by synaptosomes from rat brain: the effect of centrifugal forces. Exp Brain Res. 1978 Nov 15;33(3-4):325–335. doi: 10.1007/BF00235557. [DOI] [PubMed] [Google Scholar]
  8. JACKSON K. L., PACE N. Some permeability properties of isolated rat liver cell mitochondria. J Gen Physiol. 1956 Sep 20;40(1):47–71. doi: 10.1085/jgp.40.1.47. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johnson S. M., Miller K. W., Bangham A. D. The opposing effects of pressure and general anaesthetics on the cation permeability of liposomes of varying lipid composition. Biochim Biophys Acta. 1973 Apr 25;307(1):42–57. doi: 10.1016/0005-2736(73)90023-0. [DOI] [PubMed] [Google Scholar]
  10. KULKA R. G. Colorimetric estimation of ketopentoses and ketohexoses. Biochem J. 1956 Aug;63(4):542–548. doi: 10.1042/bj0630542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Klausner R. D., Kleinfeld A. M., Hoover R. L., Karnovsky M. J. Lipid domains in membranes. Evidence derived from structural perturbations induced by free fatty acids and lifetime heterogeneity analysis. J Biol Chem. 1980 Feb 25;255(4):1286–1295. [PubMed] [Google Scholar]
  12. LEHNINGER A. L. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev. 1962 Jul;42:467–517. doi: 10.1152/physrev.1962.42.3.467. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Malathi P., Ramaswamy K., Caspary W. F., Crane R. K. Studies on the transport of glucose from disaccharides by hamster small intestine in vitro. I. Evidence for a disaccharidase-related transport system. Biochim Biophys Acta. 1973 May 25;307(3):613–626. doi: 10.1016/0005-2736(73)90306-4. [DOI] [PubMed] [Google Scholar]
  15. Marchbanks R. M. The osmotically sensitive potassium and sodium compartments of synaptosomes. Biochem J. 1967 Jul;104(1):148–157. doi: 10.1042/bj1040148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  17. Reijngoud D. J., Tager J. M. The permeability properties of the lysosomal membrane. Biochim Biophys Acta. 1977 Nov 14;472(3-4):419–449. doi: 10.1016/0304-4157(77)90005-3. [DOI] [PubMed] [Google Scholar]
  18. Sainsbury G. M., Stubbs M., Hems R., Krebs H. A. Loss of cell constituents from hepatocytes on centrifugation. Biochem J. 1979 Jun 15;180(3):685–688. doi: 10.1042/bj1800685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science. 1972 Feb 18;175(4023):720–731. doi: 10.1126/science.175.4023.720. [DOI] [PubMed] [Google Scholar]
  20. Sperk G., Baldessarini R. J. Stabilizing effect of sucrose on leakage of cytoplasm from rat brain synaptosomes in saline media. J Neurochem. 1977 Jun;28(6):1403–1405. doi: 10.1111/j.1471-4159.1977.tb12342.x. [DOI] [PubMed] [Google Scholar]
  21. TEDESCHI H., HARRIS D. L. The osmotic behavior and permeability to non-electrolytes of mitochondria. Arch Biochem Biophys. 1955 Sep;58(1):52–67. doi: 10.1016/0003-9861(55)90092-8. [DOI] [PubMed] [Google Scholar]
  22. Takanaka K., O'Brien P. J. Mechanisms of H2O2 formation by leukocytes. Evidence for a plasma membrane location. Arch Biochem Biophys. 1975 Aug;169(2):428–435. doi: 10.1016/0003-9861(75)90184-8. [DOI] [PubMed] [Google Scholar]
  23. WERKHEISER W. C., BARTLEY W. The study of steady-state concentrations of internal solutes of mitochondria by rapid centrifugal transfer to a fixation medium. Biochem J. 1957 May;66(1):79–91. doi: 10.1042/bj0660079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wattiaux R. Behaviour of rat-liver mitochondria during centrifugation in a sucrose gradient. Mol Cell Biochem. 1974 Aug 1;4(1):21–29. doi: 10.1007/BF01731100. [DOI] [PubMed] [Google Scholar]
  25. Whittaker V. P., Michaelson I. A., Kirkland R. J. The separation of synaptic vesicles from nerve-ending particles ('synaptosomes'). Biochem J. 1964 Feb;90(2):293–303. doi: 10.1042/bj0900293. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES