Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jun;78(6):3473–3477. doi: 10.1073/pnas.78.6.3473

Amino acid sequence of Escherichia coli alkaline phosphatase.

R A Bradshaw, F Cancedda, L H Ericsson, P A Neumann, S P Piccoli, M J Schlesinger, K Shriefer, K A Walsh
PMCID: PMC319591  PMID: 7022451

Abstract

The complete amino acid sequence of the Escherichia coli alkaline phosphatase subunit [orthophosphoric-monoester phosphohydrolase (alkaline optimum), EC 3.1.3.1, isozyme 3] has been determined. The monomer contains 449 amino acid residues in a single unglycosylated polypeptide chain having a calculated Mr of 47,029. Isozyme 1 has an additional arginine residue at the NH2 terminus that presumably results from variability in processing of precursor molecules. Sequence data were obtained from both manual and automatic Edman degradation of the tryptic and cyanogen bromide peptides, as well as other peptides derived therefrom. The two disulfide bonds were determined from analyses of the appropriate peptic peptides. This structure confirms earlier reports of the sequence surrounding the active-site serine and both the NH2- and COOH-terminal cyanogen bromide fragments. A secondary structure prediction places nearly half the residues in alpha-helical segments that have 13% and 16%, respectively, in beta-strand and beta-turn orientations.

Full text

PDF
3473

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Applebury M. L., Coleman J. E. Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure. J Biol Chem. 1969 Jan 25;244(2):308–318. [PubMed] [Google Scholar]
  2. Bosron W. F., Anderson R. A., Falk M. C., Kennedy F. S., Vallee B. L. Effect of magnesium on the properties of zinc alkaline phosphatase. Biochemistry. 1977 Feb 22;16(4):610–614. doi: 10.1021/bi00623a009. [DOI] [PubMed] [Google Scholar]
  3. Bradshaw R. A., Bates O. J., Benson J. R. Peptide separations on substituted polystyrene resins. Effect of cross-linkage. J Chromatogr. 1980 Jan 4;187(1):27–33. doi: 10.1016/s0021-9673(00)87870-x. [DOI] [PubMed] [Google Scholar]
  4. Bridgen J., Secher D. S. Molecular heterogeneity of alkaline phosphatase. FEBS Lett. 1973 Jan 1;29(1):55–57. doi: 10.1016/0014-5793(73)80014-6. [DOI] [PubMed] [Google Scholar]
  5. Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
  6. Daemen F. J., Riordan J. F. Essential arginyl residues in Escherichia coli alkaline phosphatase. Biochemistry. 1974 Jul 2;13(14):2865–2871. doi: 10.1021/bi00711a014. [DOI] [PubMed] [Google Scholar]
  7. ENGSTROEM L. THE AMINO ACID SEQUENCE AROUND THE REACTIVE SERINE IN CALF-INTESTINAL ALKALINE PHOSPHATASE. Biochim Biophys Acta. 1964 Oct 23;92:79–84. [PubMed] [Google Scholar]
  8. Edelhoch H. Spectroscopic determination of tryptophan and tyrosine in proteins. Biochemistry. 1967 Jul;6(7):1948–1954. doi: 10.1021/bi00859a010. [DOI] [PubMed] [Google Scholar]
  9. GAREN A., LEVINTHAL C. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. 1960 Mar 11;38:470–483. doi: 10.1016/0006-3002(60)91282-8. [DOI] [PubMed] [Google Scholar]
  10. HARTLEY B. S. On the structure of chymotrypsin. Brookhaven Symp Biol. 1962 Dec;15:85–100. [PubMed] [Google Scholar]
  11. Hull W. E., Sykes B. D. Fluorine-19 nuclear magnetic resonance study of fluorotyrosine alkaline phosphatase: the influence of zinc on protein structure and a conformational change induced by phosphate binding. Biochemistry. 1976 Apr 6;15(7):1535–1546. doi: 10.1021/bi00652a027. [DOI] [PubMed] [Google Scholar]
  12. JANSZ H. S., BRONS D., WARRINGA M. G. Chemical nature of the DFP-binding site of pseudocholinesterase. Biochim Biophys Acta. 1959 Aug;34:573–575. doi: 10.1016/0006-3002(59)90320-8. [DOI] [PubMed] [Google Scholar]
  13. JANSZ H. S., POSTHUMUS C. H., COHEN J. A. On the active site of horse-liver ali esterase. II. Amino acid sequence in the DFP-binding site of the enzyme. Biochim Biophys Acta. 1959 Jun;33(2):396–403. doi: 10.1016/0006-3002(59)90129-5. [DOI] [PubMed] [Google Scholar]
  14. Kelley P. M., Neumann P. A., Shriefer K., Cancedda F., Schlesinger M. J., Bradshaw R. A. Amino acid sequence of Escherichia coli alkaline phosphatase. Amino- and carboxyl-terminal sequences and variations between two isozymes. Biochemistry. 1973 Aug 28;12(18):3499–3503. doi: 10.1021/bi00742a023. [DOI] [PubMed] [Google Scholar]
  15. Knox J. R., Wyckoff H. W. A crystallographic study of alkaline phosphatase at 7-7 Angstrom resolution. J Mol Biol. 1973 Mar 15;74(4):533–545. doi: 10.1016/0022-2836(73)90045-4. [DOI] [PubMed] [Google Scholar]
  16. Lazdunski C., Lazdunski M. Les isophosphatases alcalines d' Escherichia coli. Séparation, propriétés cinétiques et structurales. Biochim Biophys Acta. 1967 Oct 23;147(2):280–288. [PubMed] [Google Scholar]
  17. MALAMY M. H., HORECKER B. L. PURIFICATION AND CRYSTALLIZATION OF THE ALKALINE PHOSPHATASE OF ESCHERICHIA COLI. Biochemistry. 1964 Dec;3:1893–1897. doi: 10.1021/bi00900a018. [DOI] [PubMed] [Google Scholar]
  18. Natori S., Garen A. Molecular heterogeneity in the amino-terminal region of alkaline phosphatase. J Mol Biol. 1970 May 14;49(3):577–588. doi: 10.1016/0022-2836(70)90282-2. [DOI] [PubMed] [Google Scholar]
  19. Nikodem V., Fresco J. R. Protein fingerprinting by SDS-gel electrophoresis after partial fragmentation with CNBr. Anal Biochem. 1979 Sep 1;97(2):382–386. doi: 10.1016/0003-2697(79)90089-7. [DOI] [PubMed] [Google Scholar]
  20. Otvos J. D., Armitage I. M. Characterization of the properties of the multiple metal binding sites in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Biochemistry. 1980 Aug 19;19(17):4021–4030. doi: 10.1021/bi00558a020. [DOI] [PubMed] [Google Scholar]
  21. Otvos J. D., Browne D. T. Characterization of the histidine residues in alkaline phosphatase by carbon-13 nuclear magnetic resonance. Biochemistry. 1980 Aug 19;19(17):4011–4021. doi: 10.1021/bi00558a019. [DOI] [PubMed] [Google Scholar]
  22. PLOCKE D. J., LEVINTHAL C., VALLEE B. L. Alkaline phosphatase of Escherichia coli: a zinc metalloenzyme. Biochemistry. 1962 May 25;1:373–378. doi: 10.1021/bi00909a001. [DOI] [PubMed] [Google Scholar]
  23. ROTHMAN F., BYRNE R. Fingerprint analysis of alkaline phosphatase of Escherichia coli K12. J Mol Biol. 1963 Apr;6:330–340. doi: 10.1016/s0022-2836(63)80092-3. [DOI] [PubMed] [Google Scholar]
  24. Reynolds J. A., Schlesinger M. J. Conformational states of the subunit of Escherichia coli alkaline phosphatase. Biochemistry. 1967 Nov;6(11):3552–3559. doi: 10.1021/bi00863a029. [DOI] [PubMed] [Google Scholar]
  25. SANGER F., SHAW D. C. Amino-acid sequence about the reactive serine of a proteolytic enzyme from Bacillus subtilis. Nature. 1960 Sep 3;187:872–873. doi: 10.1038/187872a0. [DOI] [PubMed] [Google Scholar]
  26. Schlesinger M. J., Andersen L. Multiple molecular forms of the alkaline phosphatase of Escherichia coli. Ann N Y Acad Sci. 1968 Jun 14;151(1):159–170. doi: 10.1111/j.1749-6632.1968.tb11886.x. [DOI] [PubMed] [Google Scholar]
  27. Schlesinger M. J., Barrett K. The reversible dissociation of the alkaline phosphatase of Escherichia coli. I. Formation and reactivation of subunits. J Biol Chem. 1965 Nov;240(11):4284–4292. [PubMed] [Google Scholar]
  28. Schwartz J. H., Crestfield A. M., Lipmann F. THE AMINO ACID SEQUENCE OF A TETRADECAPEPTIDE CONTAINING THE REACTIVE SERINE IN E. COLI ALKALINE PHOSPHATASE. Proc Natl Acad Sci U S A. 1963 May;49(5):722–729. doi: 10.1073/pnas.49.5.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Simpson R. T., Vallee B. L., Tait G. H. Alkaline phosphatase of Escherichia coli. Composition. Biochemistry. 1968 Dec;7(12):4336–4342. doi: 10.1021/bi00852a028. [DOI] [PubMed] [Google Scholar]
  30. Simpson R. T., Vallee B. L. Two differentiable classes of metal atoms in alkaline phosphatase of Escherichia coli. Biochemistry. 1968 Dec;7(12):4343–4350. doi: 10.1021/bi00852a029. [DOI] [PubMed] [Google Scholar]
  31. Sykes B. D., Weingarten H. I., Schlesinger M. J. Fluorotyrosine alkaline phosphatase from Escherichia coli: preparation, properties, and fluorine-19 nuclear magnetic resonance spectrum. Proc Natl Acad Sci U S A. 1974 Feb;71(2):469–473. doi: 10.1073/pnas.71.2.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zwaig N., Milstein C. The amino acid sequence around the reactive serine residue in alkaline phosphatase of Serratia marcescens. Biochem J. 1964 Aug;92(2):421–422. doi: 10.1042/bj0920421. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES