Abstract
Temperature-dependent dynamic processes in biological macromolecules can produce sharp and reversible transitions in spectroscopic properties that might be misinterpreted as evidence for thermally induced conformational changes. This provides a rational explanation for the paradoxical case of D-amino acid oxidase [D-amino-acid:oxygen oxidoreductase (deaminating), EC 1.4.3.3], for which a sharp fluorescence transition at 14 degrees C, not observed by sensitive calorimetry [Sturtevant, J. M. & Mateo, P. L. (1978) Proc. Natl. Acad. Sci. USA 75, 2584-2587], could be due to a dynamic quenching process of large activation energy, rather than a change in conformational state of the protein. Similar interpretations may be valid in other systems studied by experimental techniques that depend, directly or indirectly, on molecular relaxation processes.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Cooper A. Thermodynamic fluctuations in protein molecules. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2740–2741. doi: 10.1073/pnas.73.8.2740. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
- Lakowicz J. R., Weber G. Quenching of protein fluorescence by oxygen. Detection of structural fluctuations in proteins on the nanosecond time scale. Biochemistry. 1973 Oct 9;12(21):4171–4179. doi: 10.1021/bi00745a021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Londesborough J. The causes of sharply bent or discontinuous Arrhenius plots for enzyme-catalysed reactions. Eur J Biochem. 1980 Apr;105(2):211–215. doi: 10.1111/j.1432-1033.1980.tb04491.x. [DOI] [PubMed] [Google Scholar]
- Massey V., Curti B., Ganther H. A temperature-dependent conformational change in D-amino acid oxidase and its effect on catalysis. J Biol Chem. 1966 May 25;241(10):2347–2357. [PubMed] [Google Scholar]
- McCammon J. A., Gelin B. R., Karplus M. Dynamics of folded proteins. Nature. 1977 Jun 16;267(5612):585–590. doi: 10.1038/267585a0. [DOI] [PubMed] [Google Scholar]
- Munro I., Pecht I., Stryer L. Subnanosecond motions of tryptophan residues in proteins. Proc Natl Acad Sci U S A. 1979 Jan;76(1):56–60. doi: 10.1073/pnas.76.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pohl F. M. Einfache Temperatursprung-Methode im Sekunden-bis Stundenbereich und die reversible denaturierung von Chymotrypsin. Eur J Biochem. 1968 Apr;4(3):373–377. doi: 10.1111/j.1432-1033.1968.tb00221.x. [DOI] [PubMed] [Google Scholar]
- Pohl F. M. Kinetics of reversible denaturation of trypsin in water and water--ethanol mixtures. Eur J Biochem. 1968 Dec;7(1):146–152. doi: 10.1111/j.1432-1033.1968.tb19585.x. [DOI] [PubMed] [Google Scholar]
- Sturtevant J. M., Mateo P. L. Proposed temperature-dependent conformational transition in D-amino acid oxidase: a differential scanning microcalorimetric study. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2584–2587. doi: 10.1073/pnas.75.6.2584. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas D. D., Carlsen W. F., Stryer L. Fluorescence energy transfer in the rapid-diffusion limit. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5746–5750. doi: 10.1073/pnas.75.12.5746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wagner G., DeMarco A., Wüthrich K. Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies. Biophys Struct Mech. 1976 Aug 23;2(2):139–158. doi: 10.1007/BF00863706. [DOI] [PubMed] [Google Scholar]
