Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jun;78(6):3591–3594. doi: 10.1073/pnas.78.6.3591

Glucose induces two amino acid transport systems in Chlorella.

B H Cho, N Sauer, E Komor, W Tanner
PMCID: PMC319616  PMID: 6943560

Abstract

In autotrophically grown Chlorella cells, glucose induces a hexose transport system but, at the same time, the synthesis of two amino acid transport systems is also induced. Thus, the rates of uptake of glycine, L-alanine, L-proline, and L-serine, all of which compete with each other for entry into the cells, increase more than 100-fold when the algae are pretreated with glucose. The rates of L-arginine and L-lysine uptake increase by a factor of 25 to 50. The accumulation of proline and arginine within the cells amounts to 200- and 600-fold, respectively. Glucose does not cause the positive effect on amino acid uptake by serving as metabolic substrate because the nonmetabolizable 6-deoxyglucose also acts as inducer. Cycloheximide prevents the induction. The induced transport system for the four neutral amino acids has a turnover with a half-life of 7 hr, which corresponds closely to the half-life of the hexose transport system. The transport system for the basic amino acids, on the other hand, disappears with a half-life of 25 hr.

Full text

PDF
3591

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BUTTIN G., COHEN G. N., MONOD J., RICKENBERG H. V. La galactoside-perméase d'Escherichia coli. Ann Inst Pasteur (Paris) 1956 Dec;91(6):829–857. [PubMed] [Google Scholar]
  2. Boos W. Bacterial transport. Annu Rev Biochem. 1974;43(0):123–146. doi: 10.1146/annurev.bi.43.070174.001011. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. D. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. doi: 10.1101/sqb.1961.026.01.005. [DOI] [PubMed] [Google Scholar]
  4. Fenzl F., Decker M., Haass D., Tanner W. Characterization and partial purification of an inducible protein related to hexose proton cotransport of Chlorella vulgaris. Eur J Biochem. 1977 Feb;72(3):509–514. doi: 10.1111/j.1432-1033.1977.tb11274.x. [DOI] [PubMed] [Google Scholar]
  5. Haass D., Tanner W. Regulation of Hexose Transport in Chlorella vulgaris: Characteristics of Induction and Turnover. Plant Physiol. 1974 Jan;53(1):14–20. doi: 10.1104/pp.53.1.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Haskovec C., Kotyk A. Attempts at purifying the galactose carrier from galactose-induced baker's yeast. Eur J Biochem. 1969 Jun;9(3):343–347. doi: 10.1111/j.1432-1033.1969.tb00614.x. [DOI] [PubMed] [Google Scholar]
  7. Jobe A., Bourgeois S. lac Repressor-operator interaction. VI. The natural inducer of the lac operon. J Mol Biol. 1972 Aug 28;69(3):397–408. doi: 10.1016/0022-2836(72)90253-7. [DOI] [PubMed] [Google Scholar]
  8. Komor E., Haass D., Komor B., Tanner W. The active hexose-uptake system of Chlorella vulgaris. Km-values for 6-deoxyglucose influx and efflux and their contribution to sugar accumulation. Eur J Biochem. 1973 Nov 1;39(1):193–200. doi: 10.1111/j.1432-1033.1973.tb03117.x. [DOI] [PubMed] [Google Scholar]
  9. Komor E. Proton-coupled hexose transport in Chlorella vulgaris. FEBS Lett. 1973 Dec 15;38(1):16–18. doi: 10.1016/0014-5793(73)80501-0. [DOI] [PubMed] [Google Scholar]
  10. Komor E., Tanner W. Characterization of the active hexose transport system of Chlorella vulgaris. Biochim Biophys Acta. 1971 Jul 6;241(1):170–179. doi: 10.1016/0005-2736(71)90314-2. [DOI] [PubMed] [Google Scholar]
  11. Komor E., Tanner W. The determination of the membrane ptoential of Chlorella vulgaris. Evidence for electrogenic sugar transport. Eur J Biochem. 1976 Nov 1;70(1):197–204. doi: 10.1111/j.1432-1033.1976.tb10970.x. [DOI] [PubMed] [Google Scholar]
  12. Tanner W. Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella. Biochem Biophys Res Commun. 1969 Jul 23;36(2):278–283. doi: 10.1016/0006-291x(69)90326-x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES