Abstract
Fatty acid synthesis is traditionally viewed as being confined to the cytosolic cellular fraction, although a substantial body of data indicates that both microsomes and mitochondria are capable of initiating fatty acid synthesis and may contain acetyl-CoA carboxylase [acetyl-CoA:carbon-doxide ligase (ADP-forming), EC 6.4.1.2], fatty acid synthetase, and ATP-citrate lyase [ATP citrate (pro-3S)-lyase; ATP:citrate oxaloacetate-lyase (pro-3S-CH2COO- leads to acetyl-CoA; ATP-dephosphorylating), EC 4.1.3.8] activities. We have identified 32P-labeled acetyl-CoA carboxylase and 32P-labeled ATP-citrate lyase by immunoprecipitation of a rat hepatocyte microsomal preparation. In the transition between the fasting state (low rates of lipogenesis) and fasting/re-feeding (high rates), the fraction of total cytosolic plus microsomal acetyl-CoA carboxylase in the microsomes increases from 6% to 43%, whereas the microsomal proportion of total fatty acid synthetase and ATP-citrate lyase remains approximately 10%. Microsome isolation conditions favoring carboxylase polymerization (presence of citrate) promote microsomal association, whereas conditions favoring enzyme protomerization (malonyl-CoA, preincubation with cyclic AMP/ATP/Mg2+) diminish this association. The microsomal enzyme has a 5-fold higher specific activity than the cytosolic enzyme as determined by immunotitration. Sucrose density gradient analysis of the microsomal fraction indicates that a substantial portion of carboxylase activity sediments with marker enzymes for endoplasmic reticulum, plasma membrane, Golgi apparatus, and outer mitochondrial membrane, while cytosolic enzyme or isolated enzyme incubated under polymerizing conditions does not penetrate the gradient. These data suggest that the microsomes may be a significant locus of fatty acid synthesis initiated with association of acetyl-CoA carboxylase polymer with this fraction.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- ABRAHAM S., MATTHES K. J., CHAIKOFF I. L. THE ROLE OF MICROSOMES IN FATTY ACID SYNTHESIS FROM ACETATE BY CELL-FREE PREPARATIONS OF RAT LIVER AND MAMMARY GLAND. Biochim Biophys Acta. 1963 Aug 27;70:357–369. doi: 10.1016/0006-3002(63)90765-0. [DOI] [PubMed] [Google Scholar]
- Alexander M. C., Kowaloff E. M., Witters L. A., Dennihy D. T., Avruch J. Purification of a hepatic 123,000-dalton hormone-stimulated 32P-peptide and its identification as ATP-citrate lyase. J Biol Chem. 1979 Aug 25;254(16):8052–8056. [PubMed] [Google Scholar]
- Avruch J., Leone G. R., Martin D. B. Identification and subcellular distribution of adipocyte peptides and phosphopeptides. J Biol Chem. 1976 Mar 10;251(5):1505–1510. [PubMed] [Google Scholar]
- Avruch J., Wallach D. F. Preparation and properties of plasma membrane and endoplasmic reticulum fragments from isolated rat fat cells. Biochim Biophys Acta. 1971 Apr 13;233(2):334–347. doi: 10.1016/0005-2736(71)90331-2. [DOI] [PubMed] [Google Scholar]
- Avruch J., Witters L. A., Alexander M. C., Bush M. A. Effects of glucagon and insulin on cytoplasmic protein phosphorylation in hepatocytes. J Biol Chem. 1978 Jul 10;253(13):4754–4761. [PubMed] [Google Scholar]
- Brownsey R. W., Hughes W. A., Denton R. M. Adrenaline and the regulation of acetyl-coenzyme A carboxylase in rat epididymal adipose tissue. Inactivation of the enzyme is associated with phosphorylation and can be reversed on dephosphorylation. Biochem J. 1979 Oct 15;184(1):23–32. doi: 10.1042/bj1840023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butterworth P. H., Guchhait R. B., Baum H., Olson E. B., Margolis S. A., Porter J. W. Relationship between nutritional status and fatty acid synthesis by microsomal and soluble enzymes of pigeon liver. Arch Biochem Biophys. 1966 Sep 26;116(1):453–457. doi: 10.1016/0003-9861(66)90052-x. [DOI] [PubMed] [Google Scholar]
- Donaldson W. E., Mueller N. S., Mason J. V. Intracellular localization of fatty acid synthesis in chick-embryo liver and stimulation of synthesis by exogenous glucose. Biochim Biophys Acta. 1971 Oct 5;248(1):34–40. doi: 10.1016/0005-2760(71)90072-5. [DOI] [PubMed] [Google Scholar]
- Gregolin C., Ryder E., Kleinschmidt A. K., Warner R. C., Lane M. D. Molecular characteristics of liver acetyl CoA carboxylase. Proc Natl Acad Sci U S A. 1966 Jul;56(1):148–155. doi: 10.1073/pnas.56.1.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janski A. M., Cornell N. W. Association of ATP citrate lyase with mitochondria. Biochem Biophys Res Commun. 1980 Jan 15;92(1):305–312. doi: 10.1016/0006-291x(80)91553-3. [DOI] [PubMed] [Google Scholar]
- Katiyar S. S., Porter J. W. Substrate inhibition of pigeon liver fatty acid synthetase and optimum assay conditions for over-all synthetase activity. Arch Biochem Biophys. 1974 Jul;163(1):324–331. doi: 10.1016/0003-9861(74)90483-4. [DOI] [PubMed] [Google Scholar]
- Köchli H., Von Wartburg J. P. A sensitive photometric assay for monoamine oxidase. Anal Biochem. 1978 Jan;84(1):127–135. doi: 10.1016/0003-2697(78)90491-8. [DOI] [PubMed] [Google Scholar]
- LORCH E., ABRAHAM S., CHAIKOFF I. L. FATTY ACID SYNTHESIS BY COMPLEX SYSTEMS. THE POSSIBILITY OF REGULATION BY MICROSOMES. Biochim Biophys Acta. 1963 Dec 27;70:627–641. doi: 10.1016/0006-3002(63)90807-2. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lee K. H., Kim K. H. Effect of epinephrine on acetyl-CoA carboxylase in rat epididymal fat tissue. J Biol Chem. 1978 Nov 25;253(22):8157–8161. [PubMed] [Google Scholar]
- Lee K. H., Kim K. H. Stimulation by epinephrine of in vivo phosphorylation and inactivation of acetyl coenzyme A carboxylase of rat epididymal adipose tissue. J Biol Chem. 1979 Mar 10;254(5):1450–1453. [PubMed] [Google Scholar]
- Majerus P. W., Kilburn E. Acetyl coenzyme A carboxylase. The roles of synthesis and degradation in regulation of enzyme levels in rat liver. J Biol Chem. 1969 Nov 25;244(22):6254–6262. [PubMed] [Google Scholar]
- Margolis S. A., Baum H. The association of acetyl-coenzyme A carboxylase with the microsomal fraction of pigeon liver. Arch Biochem Biophys. 1966 Jun;114(3):445–451. doi: 10.1016/0003-9861(66)90366-3. [DOI] [PubMed] [Google Scholar]
- Moss J., Lane M. D. Acetyl coenzyme A carboxylase. 3. Further studies on the relation of catalytic activity to polymeric state. J Biol Chem. 1972 Aug 25;247(16):4944–4951. [PubMed] [Google Scholar]
- Neville D. M., Jr Molecular weight determination of protein-dodecyl sulfate complexes by gel electrophoresis in a discontinuous buffer system. J Biol Chem. 1971 Oct 25;246(20):6328–6334. [PubMed] [Google Scholar]
- Podolsky D. K., Weiser M. M. Galactosyltransferase activities in human sera: detection of a cancer-associated isoenzyme. Biochem Biophys Res Commun. 1975 Jul 22;65(2):545–551. doi: 10.1016/s0006-291x(75)80181-1. [DOI] [PubMed] [Google Scholar]
- Witters L. A., Alberico L., Avruch J. Insulin regulation of glycogen synthase in the isolated rat hepatocyte. Biochem Biophys Res Commun. 1976 Apr 19;69(4):997–1003. doi: 10.1016/0006-291x(76)90471-x. [DOI] [PubMed] [Google Scholar]
- Witters L. A., Kowaloff E. M., Avruch J. Glucagon regulation of protein phosphorylation. Identification of acetyl coenzyme A carboxylase as a substrate. J Biol Chem. 1979 Jan 25;254(2):245–248. [PubMed] [Google Scholar]
- Witters L. A., Moriarity D., Martin D. B. Regulation of hepatic acetyl coenzyme A carboxylase by insulin and glucagon. J Biol Chem. 1979 Jul 25;254(14):6644–6649. [PubMed] [Google Scholar]
- Witters L. A., Vogt B. A new method for the isolation of rat liver acetyl-CoA carboxylase. J Lipid Res. 1981 Feb;22(2):364–369. [PubMed] [Google Scholar]


