Abstract
A sulfated cell surface glycoprotein with an apparent molecular weight of 185,000 is synthesized in the multicellular organism Volvox only during the limited period of embryogenesis. The lifetime of sulfate residues on this glycoprotein is very short (half-life about 20 min). Production of this sulfated glycoprotein sharply decreases to a minimum shortly before the onset of the differentiating cell cleavage--e.g., in asexual development, before the 32-cell embryo divides. It is demonstrated that the sulfated glycoprotein behaves in many respects as would the hypothetical cell surface component postulated by a recently published model [Sumper, M. (1979) FEBS Lett. 107, 241-246], which proposes an explanation for the cell-counting mechanism and the spatial control of differentiation that is operative in Volvox embryogenesis.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
- Callahan A. M., Huskey R. J. Genetic control of sexual development in Volvox. Dev Biol. 1980 Dec;80(2):419–435. doi: 10.1016/0012-1606(80)90416-9. [DOI] [PubMed] [Google Scholar]
- Cássaro C. M., Dietrich C. P. Distribution of sulfated mucopolysaccharides in invertebrates. J Biol Chem. 1977 Apr 10;252(7):2254–2261. [PubMed] [Google Scholar]
- Dietrich C. P., Sampaio L. O., Toledo O. M., Cássaro C. M. Cell recognition and adhesiveness: a possible biological role for the sulfated mucopolysaccharides. Biochem Biophys Res Commun. 1977 Mar 21;75(2):329–336. doi: 10.1016/0006-291x(77)91046-4. [DOI] [PubMed] [Google Scholar]
- Frazier W., Glaser L. Surface components and cell recognition. Annu Rev Biochem. 1979;48:491–523. doi: 10.1146/annurev.bi.48.070179.002423. [DOI] [PubMed] [Google Scholar]
- Harrison F. L., Chesterton C. J. Factors mediating cell--cell recognition and adhesion. Galaptins, a recently discovered class of bridging molecules. FEBS Lett. 1980 Dec 29;122(2):157–165. doi: 10.1016/0014-5793(80)80428-5. [DOI] [PubMed] [Google Scholar]
- Hogsett W. E., Quatrano R. S. Sulfation of fucoidin in Fucus embryos. III. Required for localization in the rhizoid wall. J Cell Biol. 1978 Sep;78(3):866–873. doi: 10.1083/jcb.78.3.866. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huskey R. J., Griffin B. E., Cecil P. O., Callahan A. M. A Preliminary Genetic Investigation of VOLVOX CARTERI. Genetics. 1979 Feb;91(2):229–244. doi: 10.1093/genetics/91.2.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kinoshita S. Heparin as a possible initiator of genomic RNA synthesis in early development of sea urchin embryos. Exp Cell Res. 1971 Feb;64(2):403–411. doi: 10.1016/0014-4827(71)90094-2. [DOI] [PubMed] [Google Scholar]
- Kinoshita S., Saiga H. The role of proteoglycan in the development of sea urchins. I. Abnormal development of sea urchin embryos caused by the disturbance of proteoglycan synthesis. Exp Cell Res. 1979 Oct 15;123(2):229–236. doi: 10.1016/0014-4827(79)90463-4. [DOI] [PubMed] [Google Scholar]
- Kochert G. Differentiation of reproductive cells in Volvox carteri. J Protozool. 1968 Aug;15(3):438–452. doi: 10.1111/j.1550-7408.1968.tb02154.x. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Quatrano R. S., Crayton M. A. Sulfation of fucoidan in Fucus embryos. I. Possible role in localization. Dev Biol. 1973 Jan;30(1):29–41. doi: 10.1016/0012-1606(73)90045-6. [DOI] [PubMed] [Google Scholar]
- Starr R. C., Jaenicke L. Purification and characterization of the hormone initiating sexual morphogenesis in Volvox carteri f. nagariensis Iyengar. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1050–1054. doi: 10.1073/pnas.71.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sumper M. Control of differentiation in volvox carteri: a model explaining pattern formation during embryogenesis. FEBS Lett. 1979 Nov 1;107(1):241–246. doi: 10.1016/0014-5793(79)80505-0. [DOI] [PubMed] [Google Scholar]
- Sumper M., Wenzl S. Sulphation-desulphation of a membrane component proposed to be involved in control of differentiation in Volvox carteri. FEBS Lett. 1980 Jun 2;114(2):307–312. doi: 10.1016/0014-5793(80)81140-9. [DOI] [PubMed] [Google Scholar]
- Wenzl S., Sumper M. Evidence for membrane-mediated control of differentiation during embryogenesis of Volvox carteri. FEBS Lett. 1979 Nov 1;107(1):247–249. doi: 10.1016/0014-5793(79)80506-2. [DOI] [PubMed] [Google Scholar]






