Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jun;78(6):3809–3813. doi: 10.1073/pnas.78.6.3809

A novel type of T-T cell interaction removes the requirement for I-B region in the H-2 complex.

C N Baxevanis, Z A Nagy, J Klein
PMCID: PMC319662  PMID: 6791162

Abstract

When tested in the in vitro T-cell proliferation assay, H-2a cells are nonresponders to lactate dehydrogenase B (LDH-B; L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) and to IgG2a myeloma protein. However, the cells can be converted into responders either by the addition to the culture of monoclonal anti-Ia.m7 antibody or by the removal from the culture of Lyt-2+ [T-lymphocyte-associated alloantigen (Lyt)-2 positive] lymphocytes. In both instances, the responsiveness can be suppressed again by the addition to the culture of monoclonal antibodies to I region-associated (Ia) molecules controlled by the I-A subregion. These data suggest that, in some H-2 haplotypes, the response to LDH-B and IgG2a is the result of interaction between the I-A and I-E subregions. The H-2a haplotype carries a responder allele at the I-A subregion but the responsiveness of H-2a cells is normally suppressed by T cells recognizing the antigen in the context of the I-E molecules. When the recognition of I-E molecules is blocked by an antiserum or when the cells capable of this recognition are removed, the H-2a cells become responders. These experiments demonstrate a nonresponder turned responder by antibody inhibition. They also demonstrate that the postulate of the I-B subregion is no longer necessary and provide additional evidence that the Ia molecules are the products of the immune response (Ir) genes.

Full text

PDF
3809

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkan S. S. Antigen-induced proliferation assay for mouse T lymphocytes. Response to a monovalent antigen. Eur J Immunol. 1978 Feb;8(2):112–118. doi: 10.1002/eji.1830080208. [DOI] [PubMed] [Google Scholar]
  2. Baxevanis C. N., Wernet D., Nagy Z. A., Maurer P. H., Klein J. Genetic control of T-cell proliferative responses to poly(glu40ala60) and poly(glu51lys34tyr15): subregion-specific inhibition of the responses with monoclonal Ia antibodies. Immunogenetics. 1980;11(6):617–628. doi: 10.1007/BF01567830. [DOI] [PubMed] [Google Scholar]
  3. Benacerraf B., Germain R. N. The immune response genes of the major histocompatibility complex. Immunol Rev. 1978;38:70–119. doi: 10.1111/j.1600-065x.1978.tb00385.x. [DOI] [PubMed] [Google Scholar]
  4. Falkenberg F. W., Sulica A., Shearer G. M., Mozes E., Sela M. Cellular analysis of the phenotypic correction of the genetically controlled low immune response to the polyproline determinant by macrophages. Cell Immunol. 1974 May;12(2):271–279. doi: 10.1016/0008-8749(74)90079-3. [DOI] [PubMed] [Google Scholar]
  5. Jones P. P., Murphy D. B., McDevitt H. O. Two-gene control of the expression of a murine Ia antigen. J Exp Med. 1978 Oct 1;148(4):925–939. doi: 10.1084/jem.148.4.925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kapp J. A., Araneo B. A., Clevinger B. L. Suppression of antibody and T cell proliferative responses to L-glutamic acid60-L-alanine30-L-tyrosine10 by a specific monoclonal T cell factor. J Exp Med. 1980 Jul 1;152(1):235–240. doi: 10.1084/jem.152.1.235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lemke H., Hämmerling G. J., Hämmerling U. Fine specificity analysis with monoclonal antibodies of antigens controlled by the major histocompatibility complex and by the Qa/TL region in mice. Immunol Rev. 1979;47:175–206. doi: 10.1111/j.1600-065x.1979.tb00293.x. [DOI] [PubMed] [Google Scholar]
  8. Lerner E. A., Matis L. A., Janeway C. A., Jr, Jones P. P., Schwartz R. H., Murphy D. B. Monoclonal antibody against an Ir gene product? J Exp Med. 1980 Oct 1;152(4):1085–1101. doi: 10.1084/jem.152.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lieberman R., Paul W. E., Humphrey W., Jr, Stimpfling J. H. H-2-linked immune response (Ir) genes. Independent loci for Ir-IgG and Ir-IgA genes. J Exp Med. 1972 Nov 1;136(5):1231–1240. doi: 10.1084/jem.136.5.1231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Longo D. L., Schwartz R. H. Gene complementation. Neither Ir-GLphi gene need be present in the proliferative T cell to generate an immune response to Poly(Glu55Lys36Phe9)n. J Exp Med. 1980 Jun 1;151(6):1452–1467. doi: 10.1084/jem.151.6.1452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Melchers I., Rajewsky K., Shreffler D. C. Ir-LDHB: map position and functional analysis. Eur J Immunol. 1973 Dec;3(12):754–761. doi: 10.1002/eji.1830031204. [DOI] [PubMed] [Google Scholar]
  12. Melchers I., Rajewsky K. Specific control of responsiveness by two complementing Ir loci in the H-2 complex. Eur J Immunol. 1975 Nov;5(11):753–759. doi: 10.1002/eji.1830051105. [DOI] [PubMed] [Google Scholar]
  13. Schwartz R. H., David C. S., Dorf M. E., Benacerraf B., Paul W. E. Inhibition of dual Ir gene-controlled T-lymphocyte proliferative response to poly (Glu56Lys35Phe9)n with anti-Ia antisera directed against products of either I-A or I-C subregion. Proc Natl Acad Sci U S A. 1978 May;75(5):2387–2391. doi: 10.1073/pnas.75.5.2387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Schwartz R. H., Paul W. E. T-lymphocyte-enriched murine peritoneal exudate cells. II. Genetic control of antigen-induced T-lymphocyte proliferation. J Exp Med. 1976 Mar 1;143(3):529–540. doi: 10.1084/jem.143.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schwartz R. H., Yano A., Stimpfling J. H., Paul W. E. Gene complementation in the T-lymphocyte proliferative response to poly (Glu55Lys36Phe9)n. A demonstration that both immune response gene products must be expressed in the same antigen-presenting cell. J Exp Med. 1979 Jan 1;149(1):40–57. doi: 10.1084/jem.149.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Shevach E. M., Paul W. E., Green I. Histocompatibility-linked immune response gene function in guinea pigs. Specific inhibition of antigen-induced lymphocyte proliferation by alloantisera. J Exp Med. 1972 Nov 1;136(5):1207–1221. doi: 10.1084/jem.136.5.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Suzuki K., Fathman C. G., Tomasi T. B., Jr Non-H-2 linked control of low versus high responses of antigen-induced lymph node cell proliferation: possible role for antigen-presenting cells. J Immunol. 1979 Oct;123(4):1530–1534. [PubMed] [Google Scholar]
  18. Wiener E., Bandieri A. Differences in antigen handling by peritoneal macrophages from the Biozzi high and low responder lines of mice. Eur J Immunol. 1974 Jul;4(7):457–463. doi: 10.1002/eji.1830040703. [DOI] [PubMed] [Google Scholar]
  19. Zinkernagel R. M., Doherty P. C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature. 1974 Apr 19;248(5450):701–702. doi: 10.1038/248701a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES