Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jul;78(7):4226–4230. doi: 10.1073/pnas.78.7.4226

Alcohol and polyol dehydrogenases are both divided into two protein types, and structural properties cross-relate the different enzyme activities within each type.

H Jörnvall, M Persson, J Jeffery
PMCID: PMC319762  PMID: 7027257

Abstract

Sorbitol dehydrogenase from sheep liver shows similarities to mammalian and yeast alcohol dehydrogenases. Comparisons based on peptides from segments of sorbitol dehydrogenase reveal that homologous regions with 38% identity include two ligands to the active site zinc atom in liver alcohol dehydrogenase, as well as further important residues. Similarities in in other regions are less extensive, exactly as they are between different alcohol dehydrogenases. In all aspects, sorbitol dehydrogenase appears as a typical member of the alcohol dehydrogenase family. On the other hand, alcohol dehydrogenase from Drosophila, which has a shorter subunit, is not closely related to either of these enzymes, except for a region that probably corresponds to the first part of the coenzyme binding domain in many dehydrogenases. Instead, Drosophila alcohol dehydrogenase in its supposed catalytic region shows similarities toward Klebsiella ribitol dehydrogenase, which also has a small subunit. It may be concluded that both alcohol and polyol dehydrogenases show two types of protein subunit, reflecting an early subdivision of polypeptide types into "long" and "short" subunits rather than into different enzymatic specificities or quaternary structures. The relationships explain known properties of all these enzymes and provide insight into functional mechanisms and evolutionary interpretations.

Full text

PDF
4226

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Austen B. M., Haberland M. E., Nyc J. F., Smith E. L. Nicotinamide adenine dinucleotide-specific glutamate dehydrogenase of Neurospora. IV. The COOH-terminal 669 residues of the peptide chain; comparison with other glutamate dehydrogenases. J Biol Chem. 1977 Nov 25;252(22):8142–8149. [PubMed] [Google Scholar]
  2. Cohen L. H., Westerhuis L. W., de Jong W. W., Bloemendal H. Rat alpha-crystallin A chain with an insertion of 22 residues. Eur J Biochem. 1978 Aug 15;89(1):259–266. doi: 10.1111/j.1432-1033.1978.tb20921.x. [DOI] [PubMed] [Google Scholar]
  3. Eklund H., Nordström B., Zeppezauer E., Söderlund G., Ohlsson I., Boiwe T., Söderberg B. O., Tapia O., Brändén C. I., Akeson A. Three-dimensional structure of horse liver alcohol dehydrogenase at 2-4 A resolution. J Mol Biol. 1976 Mar 25;102(1):27–59. doi: 10.1016/0022-2836(76)90072-3. [DOI] [PubMed] [Google Scholar]
  4. Fitch W. M. An improved method of testing for evolutionary homology. J Mol Biol. 1966 Mar;16(1):9–16. doi: 10.1016/s0022-2836(66)80258-9. [DOI] [PubMed] [Google Scholar]
  5. Hill E., Tsernoglou D., Webb L., Banaszak L. J. Polypeptide conformation of cytoplasmic malate dehydrogenase from an electron density map at 3.0 angstrom resolution. J Mol Biol. 1972 Dec 30;72(3):577–589. doi: 10.1016/0022-2836(72)90176-3. [DOI] [PubMed] [Google Scholar]
  6. Jörnvall H. Differences between alcohol dehydrogenases. Structural properties and evolutionary aspects. Eur J Biochem. 1977 Feb;72(3):443–452. doi: 10.1111/j.1432-1033.1977.tb11268.x. [DOI] [PubMed] [Google Scholar]
  7. Jörnvall H., Eklund H., Brändén C. I. Subunit conformation of yeast alcohol dehydrogenase. J Biol Chem. 1978 Dec 10;253(23):8414–8419. [PubMed] [Google Scholar]
  8. Jörnvall H. Horse liver alcohol dehydrogenase. The primary structure of an N-terminal part of the protein chain of the ethanol-active isoenzyme. Eur J Biochem. 1970 Jul;14(3):521–534. doi: 10.1111/j.1432-1033.1970.tb00319.x. [DOI] [PubMed] [Google Scholar]
  9. Ohlsson I., Nordström B., Brändén C. I. Structural and functional similarities within the coenzyme binding domains of dehydrogenases. J Mol Biol. 1974 Oct 25;89(2):339–354. doi: 10.1016/0022-2836(74)90523-3. [DOI] [PubMed] [Google Scholar]
  10. Schwartz M. F., Jörnvall H. Structural analyses of mutant and wild-type alcohol dehydrogenases from drosophila melanogaster. Eur J Biochem. 1976 Sep;68(1):159–168. doi: 10.1111/j.1432-1033.1976.tb10774.x. [DOI] [PubMed] [Google Scholar]
  11. Thatcher D. R., Sawyer L. Secondary-structure prediction from the sequence of Drosophila melanogaster (fruitfly) alcohol dehydrogenase. Biochem J. 1980 Jun 1;187(3):884–886. doi: 10.1042/bj1870884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thatcher D. R. The complete amino acid sequence of three alcohol dehydrogenase alleloenzymes (AdhN-11, AdhS and AdhUF) from the fruitfly Drosophila melanogaster. Biochem J. 1980 Jun 1;187(3):875–883. doi: 10.1042/bj1870875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. von Bahr-Lindström H., Andersson L., Mosbach K., Jörnvall H. Purification and characterization of chicken liver alcohol dehydrogenase. FEBS Lett. 1978 May 15;89(2):293–297. doi: 10.1016/0014-5793(78)80239-7. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES