Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Jul;78(7):4611–4615. doi: 10.1073/pnas.78.7.4611

Monoclonal antibodies against beta nerve growth factor and their effects on receptor binding and biological activity.

A Zimmermann, A Sutter, E M Shooter
PMCID: PMC319843  PMID: 6270686

Abstract

Two hybrid cell lines, MC beta-1 and MC beta-2, secreting monoclonal antibodies against mouse submaxillary gland beta nerve growth factor (beta NGF), were produced by interspecies hybridization of spleen cells from rats immunized with beta NGF and mouse myeloma cells. The antibodies secreted by the two hybridomas are of the IgG1 subclass and bind staphylococcal protein A. The equilibrium dissociation constant of the beta NGF--antibody complex was determined for the MC beta-1 antibodies in solid phase and in solution. On protein A-coated surfaces the Kd is 3 X 10(-10) M, 2 orders of magnitude lower than the Kd 2 X 10(-8) M obtained in solution. The antigenic site recognized by MC beta-1 antibodies is present on each protomer of the beta NGF dimer, and the binding affinity of the second antibody molecule is similar to that of the first. The MC beta-1 antibodies inhibit neurite outgrowth from sensory neurons. Because this inhibition directly correlates with the inhibition of binding to the higher affinity beta NGF receptors, it suggests that beta NGF complexed with two antibody molecules does not bind to the receptor and is biologically inactive.

Full text

PDF
4611

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEERS R. F., Jr, SIZER I. W. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem. 1952 Mar;195(1):133–140. [PubMed] [Google Scholar]
  2. Berger E. A., Shooter E. M. Biosynthesis of beta nerve growth factor in mouse submaxillary glands. J Biol Chem. 1978 Feb 10;253(3):804–810. [PubMed] [Google Scholar]
  3. Black I. B. Regulation of autonomic development. Annu Rev Neurosci. 1978;1:183–214. doi: 10.1146/annurev.ne.01.030178.001151. [DOI] [PubMed] [Google Scholar]
  4. Bradshaw R. A. Nerve growth factor. Annu Rev Biochem. 1978;47:191–216. doi: 10.1146/annurev.bi.47.070178.001203. [DOI] [PubMed] [Google Scholar]
  5. Goodfellow P. N., Levinson J. R., Williams V. E., 2nd, McDevitt H. O. Monoclonal antibodies reacting with murine teratocarcinoma cells. Proc Natl Acad Sci U S A. 1979 Jan;76(1):377–380. doi: 10.1073/pnas.76.1.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gorin P. D., Johnson E. M. Experimental autoimmune model of nerve growth factor deprivation: effects on developing peripheral sympathetic and sensory neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5382–5386. doi: 10.1073/pnas.76.10.5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gundersen R. W., Barrett J. N. Neuronal chemotaxis: chick dorsal-root axons turn toward high concentrations of nerve growth factor. Science. 1979 Nov 30;206(4422):1079–1080. doi: 10.1126/science.493992. [DOI] [PubMed] [Google Scholar]
  8. Harper G. P., Al-Saffar A. M., Pearce F. L., Vernon C. A. The production of nerve growth factor in vitro by tissues of the mouse, rat, and embryonic chick. Dev Biol. 1980 Jun 15;77(2):379–390. doi: 10.1016/0012-1606(80)90482-0. [DOI] [PubMed] [Google Scholar]
  9. Hendry I. A., Stach R., Herrup K. Characteristics of the retrograde axonal transport system for nerve growth factor in the sympathetic nervous system. Brain Res. 1974 Dec 20;82(1):117–128. doi: 10.1016/0006-8993(74)90897-x. [DOI] [PubMed] [Google Scholar]
  10. Hendry I. A., Stöckel K., Thoenen H., Iversen L. L. The retrograde axonal transport of nerve growth factor. Brain Res. 1974 Mar 15;68(1):103–121. doi: 10.1016/0006-8993(74)90536-8. [DOI] [PubMed] [Google Scholar]
  11. Kearney J. F., Radbruch A., Liesegang B., Rajewsky K. A new mouse myeloma cell line that has lost immunoglobulin expression but permits the construction of antibody-secreting hybrid cell lines. J Immunol. 1979 Oct;123(4):1548–1550. [PubMed] [Google Scholar]
  12. Köhler G., Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975 Aug 7;256(5517):495–497. doi: 10.1038/256495a0. [DOI] [PubMed] [Google Scholar]
  13. LITTLEFIELD J. W. SELECTION OF HYBRIDS FROM MATINGS OF FIBROBLASTS IN VITRO AND THEIR PRESUMED RECOMBINANTS. Science. 1964 Aug 14;145(3633):709–710. doi: 10.1126/science.145.3633.709. [DOI] [PubMed] [Google Scholar]
  14. Landreth G. E., Shooter E. M. Nerve growth factor receptors on PC12 cells: ligand-induced conversion from low- to high-affinity states. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4751–4755. doi: 10.1073/pnas.77.8.4751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ledbetter J. A., Herzenberg L. A. Xenogeneic monoclonal antibodies to mouse lymphoid differentiation antigens. Immunol Rev. 1979;47:63–90. doi: 10.1111/j.1600-065x.1979.tb00289.x. [DOI] [PubMed] [Google Scholar]
  16. Letourneau P. C. Chemotactic response of nerve fiber elongation to nerve growth factor. Dev Biol. 1978 Sep;66(1):183–196. doi: 10.1016/0012-1606(78)90283-x. [DOI] [PubMed] [Google Scholar]
  17. Menesini Chen M. G., Chen J. S., Levi-Montalcini R. Sympathetic nerve fibers ingrowth in the central nervous system of neonatal rodent upon intracerebral NGF injections. Arch Ital Biol. 1978 Jan;116(1):53–84. [PubMed] [Google Scholar]
  18. Moore J. B., Jr, Shooter E. M. The use of hybrid molecules in a study of the equilibrium between nerve growth factor monomers and dimers. Neurobiology. 1975 Dec;5(6):369–381. [PubMed] [Google Scholar]
  19. Murphy R. A., Saide J. D., Blanchard M. H., Young M. Molecular properties of the nerve growth factor secreted in mouse saliva. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2672–2676. doi: 10.1073/pnas.74.7.2672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. OUCHTERLONY O. Diffusion-in-gel methods for immunological analysis. Prog Allergy. 1958;5:1–78. [PubMed] [Google Scholar]
  21. Paravicini U., Stoeckel K., Thoenen H. Biological importance of retrograde axonal transport of nerve growth factor in adrenergic neurons. Brain Res. 1975 Feb 7;84(2):279–291. doi: 10.1016/0006-8993(75)90982-8. [DOI] [PubMed] [Google Scholar]
  22. Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
  23. Steiner D. F., Hallund O., Rubenstein A., Cho S., Bayliss C. Isolation and properties of proinsulin, intermediate forms, and other minor components from crystalline bovine insulin. Diabetes. 1968 Dec;17(12):725–736. doi: 10.2337/diab.17.12.725. [DOI] [PubMed] [Google Scholar]
  24. Stoeckel K., Thoenen H. Retrograde axonal transport of nerve growth factor: specificity and biological importance. Brain Res. 1975 Feb 28;85(2):337–341. doi: 10.1016/0006-8993(75)90092-x. [DOI] [PubMed] [Google Scholar]
  25. Stöckel K., Paravicini U., Thoenen H. Specificity of the retrograde axonal transport of nerve growth factor. Brain Res. 1974 Aug 23;76(3):413–421. doi: 10.1016/0006-8993(74)90818-x. [DOI] [PubMed] [Google Scholar]
  26. Sutter A., Riopelle R. J., Harris-Warrick R. M., Shooter E. M. Nerve growth factor receptors. Characterization of two distinct classes of binding sites on chick embryo sensory ganglia cells. J Biol Chem. 1979 Jul 10;254(13):5972–5982. [PubMed] [Google Scholar]
  27. Warren S. L., Fanger M., Neet K. E. Inhibition of biological activity of mouse beta-nerve growth factor by monoclonal antibody. Science. 1980 Nov 21;210(4472):910–912. doi: 10.1126/science.6159686. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES