Skip to main content
Pulmonary Circulation logoLink to Pulmonary Circulation
. 2011 Jan-Mar;1(1):122–124. doi: 10.4103/2045-8932.78096

Diagnostic and therapeutic algorithm for pulmonary arterial hypertension

Ankit A Desai 1,, Roberto F Machado 1
PMCID: PMC3198634  PMID: 22034600

PULMONARY ARTERIAL HYPERTENSION DIAGNOSTIC ALGORITHM

Pulmonary hypertension (PH) is defined as a mean pulmonary artery pressure (mPAP) ≥25 mmHg, irrespective of etiology. In contrast to PH, the definition of pulmonary arterial hypertension (PAH) requires the exclusion of elevated pulmonary venous pressure, an established cause of PH, as reflected by a normal wedge pressure or left ventricular end-diastolic pressure (LVEDP) (≤15 mmHg). If PH is suspected in a patient, suitable screening tests are conducted to confirm the presence of PH and delineate the etiology to appropriately tailor an optimal therapeutic regimen. The diagnostic algorithm [Figure 1] reflects an integration of assessment pathways that help differentiate patients with WHO groups II–IV of pulmonary hypertension from WHO group I PAH as well as the subgroups of PAH. Caution is advised to apply the algorithm to any individual patient as the evaluation process of any patient with suspected PH requires a variety of investigations intended to confirm PH and the specific PAH subtype and, once confirmed, evaluate the functional and hemodynamic impairments of those patients. Right heart catheterization is universally considered to be an indispensable part of the diagnostic assessment.

Figure 1.

Figure 1

PAH diagnostic algorithm. (ABG - Arterial blood gas; ALK-1 - Activin-receptor-like kinase; ANA - Anti-nuclear antibodies; BMPR2 - Bone morphogenetic protein receptor 2; CHD - Congenital heart disease; CMR - Cardiac magnetic resonance; CT - Computed tomography; CTD - Connective tissue disease; ECG - Electrocardiogram; FMHx - Family medical history; HHT - Hereditary hemorrhagic telangiectasia; HRCT - High-resolution computed tomography; LFTs - Liver function tests; LH - Left heart; PAP - Pulmonary arterial pressure; LVEDP - Left ventricular end-diastolic pressure; PAH - Pulmonary arterial hypertension; IPAH - Idiopathic pulmonary arterial hypertension; PCH - Pulmonary capillary hemangiomatosis; PE - Pulmonary thromboembolic disease; PFT - Pulmonary function test; PH - Pulmonary hypertension; PVOD - Pulmonary venoocclusive disease; RHC - Right heart catheterization; TEE - Transesophageal echocardiography; TTE - Transthoracic echocardiography; US - Ultrasonography; V/Q - Ventilation/perfusion lung scan; WHO - World Health Organization)

PAH RX ALGORITHM

The treatment algorithm is based on a consensus of the PH community based on the majority of randomized controlled clinical trials (RCTs) for PAH. The grading system is based on the recently published consensus for these drug trials.[1] Additionally, most trials were conducted in idiopathic or heritable PAH and PAH associated with scleroderma or anorexigen use; hence, the therapeutic effect on other PAH subpopulations may not be equal. Although there are no RCTs to substantiate the use of the following therapies, oral anticoagulation, diuretics in cases of fluid retention and supplemental oxygen in cases of hypoxemia (oxygen saturation <92%) are still considered the first line of treatment in patients with PAH. Acute vasoreactivity testing should be performed in all patients with PAH. Vasoreactivity is defined as reduction of mPAP ≥10 mmHg to reach an mPAP ≤40 mmHg with a normalized or increased cardiac output with acute pulmonary vasodilator challenge (either inhaled nitric oxide, adenosine or intravenous epoprostenol). Vasoreactive patients should be treated with high-dose calcium channel blockers with maintenance of response, defined as WHO functional class I or II with near-normal hemodynamic status, being confirmed by repeat right heart catheterization and clinical assessment after 3–6 months of treatment. Non-responders to acute vasoreactivity testing are defined both hemodynamically as well as by functional class II–IV, and should be considered candidates for other treatments as shown in Figure 2. The choice of the agent is dependent on a variety of factors, including route of administration, side-effect profile, patient preference and the physician's experience and clinical judgment. Continuous IV epoprostenol is the first-line therapy for IPAH and HPAH patients in WHO functional class IV because of its demonstrated survival benefit. Combination therapy should be considered for patients who fail monotherapy.

Figure 2.

Figure 2

PAH treatment algorithm. (PAH - Pulmonary arterial hypertension; FC - Functional class; ERA - Endothelin receptor antagonist; PDE-I - Phosphodiesterase type 5 inhibitor; IV - Intravenous; PO - Oral; SC - Subcutaneous; NA - Not approved; WHO - World Health Organization; PAP - Pulmonary arterial pressure; RCT - Randomized controlled trial. Strength of recommendation: A - Strong recommendation; B - Moderate recommendation; C - Weak recommendation; D - Negative recommendation; E/A - Strong recommendation on the basis of expert opinion only; E/B - Moderate recommendation on the basis of expert opinion only; E/C - Weak recommendation on the basis of expert opinion only; E/D - Negative recommendation on the basis of expert opinion only)

Footnotes

Source of Support: NIH grant (HL098454)

Conflict of Interest: None declared.

REFERENCES

  • 1.Barst RJ, Gibbs JS, Ghofrani HA, Hoeper MM, McLaughlin VV, Rubin LJ, et al. Updated evidence-based treatment algorithm in pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:78–84. doi: 10.1016/j.jacc.2009.04.017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Rich S, Kaufmann E, Levy PS. The effect of high doses of calcium-channel blockers on survival in primary pulmonary hypertension. N Engl J Med. 1992;327:76–81. doi: 10.1056/NEJM199207093270203. [DOI] [PubMed] [Google Scholar]
  • 3.Rich S, Brundage BH. High-dose calcium channel-blocking therapy for primary pulmonary hypertension: evidence for long-term reduction in pulmonary arterial pressure and regression of right ventricular hypertrophy. Circulation. 1987;76:135–41. doi: 10.1161/01.cir.76.1.135. [DOI] [PubMed] [Google Scholar]
  • 4.Raffy O, Azarian R, Brenot F, Parent F, Sitbon O, Petitpretz P, et al. Clinical significance of the pulmonary vasodilator response during short-term infusion of prostacyclin in primary pulmonary hypertension. Circulation. 1996;93:484–8. doi: 10.1161/01.cir.93.3.484. [DOI] [PubMed] [Google Scholar]
  • 5.Barst RJ, Maislin G, Fishman AP. Vasodilator therapy for primary pulmonary hypertension in children. Circulation. 1999;99:1197–208. doi: 10.1161/01.cir.99.9.1197. [DOI] [PubMed] [Google Scholar]
  • 6.Sitbon O, Humbert M, Jaïs X, Ioos V, Hamid AM, Provencher S, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–11. doi: 10.1161/CIRCULATIONAHA.104.488486. [DOI] [PubMed] [Google Scholar]
  • 7.Yung D, Widlitz AC, Rosenzweig EB, Kerstein D, Maislin G, Barst RJ. Outcomes in children with idiopathic pulmonary arterial hypertension. Circulation. 2004;110:660–5. doi: 10.1161/01.CIR.0000138104.83366.E9. [DOI] [PubMed] [Google Scholar]
  • 8.Rich S, Seidlitz M, Dodin E, Osimani D, Judd D, Genthner D, et al. The short-term effects of digoxin in patients with right ventricular dysfunction from pulmonary hypertension. Chest. 1998;114:787–92. doi: 10.1378/chest.114.3.787. [DOI] [PubMed] [Google Scholar]
  • 9.Fuster V, Steele PM, Edwards WD, Gersh BJ, McGoon MD, Frye RL. Primary pulmonary hypertension: natural history and the importance of thrombosis. Circulation. 1984;70:580–7. doi: 10.1161/01.cir.70.4.580. [DOI] [PubMed] [Google Scholar]
  • 10.Frank H, Mlczoch J, Huber K, Schuster E, Gurtner HP, Kneussl M. The effect of anticoagulant therapy in primary and anorectic drug-induced pulmonary hypertension. Chest. 1997;112:714–21. doi: 10.1378/chest.112.3.714. [DOI] [PubMed] [Google Scholar]
  • 11.Johnson SR, Mehta S, Granton JT. Anticoagulation in pulmonary arterial hypertension: a qualitative systematic review. Eur Respir J. 2006;28:999–1004. doi: 10.1183/09031936.06.00015206. [DOI] [PubMed] [Google Scholar]
  • 12.Channick RN, Simonneau G, Sitbon O, Robbins IM, Frost A, Tapson VF. Effects of the dual endothelin-receptor antagonist bosentan in patients with pulmonary hypertension: a randomised placebo-controlled study. Lancet. 2001;358:1119–23. doi: 10.1016/S0140-6736(01)06250-X. [DOI] [PubMed] [Google Scholar]
  • 13.Rubin LJ, Badesch DB, Barst RJ, Galie N, Black CM, Keogh A, et al. Bosentan therapy for pulmonary arterial hypertension. N Engl J Med. 2002;346:896–903. doi: 10.1056/NEJMoa012212. [DOI] [PubMed] [Google Scholar]
  • 14.Galiè N, Beghetti M, Gatzoulis MA, Granton J, Berger RM, Lauer A, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation. 2006;144:48–54. doi: 10.1161/CIRCULATIONAHA.106.630715. [DOI] [PubMed] [Google Scholar]
  • 15.Galiè N, Rubin Lj, Hoeper M, Jansa P, Al-Hiti H, Meyer G, et al. Treatment of patients with mildly symptomatic pulmonary arterial hypertension with bosentan (EARLY study): a double-blind, randomised controlled trial. Lancet. 2008;371:2093–100. doi: 10.1016/S0140-6736(08)60919-8. [DOI] [PubMed] [Google Scholar]
  • 16.Galiè N, Brundage BH, Ghofrani HA, Oudiz RJ, Simonneau G, Safdar Z, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119:2894–903. doi: 10.1161/CIRCULATIONAHA.108.839274. [DOI] [PubMed] [Google Scholar]
  • 17.Galiè N, Hinderliter AL, Torbicki A, Fourme T, Simonneau G, Pulido T, et al. Effects of the oral endothelin-receptor antagonist bosentan on echocardiographic and doppler measures in patients with pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41:1380–6. doi: 10.1016/s0735-1097(03)00121-9. [DOI] [PubMed] [Google Scholar]
  • 18.Galiè N, Olschewski H, Oudiz RJ, Torres F, Frost A, Ghofrani HA, et al. Ambrisentan for the treatment of pulmonary arterial hypertension: results of the ambrisentan in pulmonary arterial hypertension, randomized, double-blind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117:3010–9. doi: 10.1161/CIRCULATIONAHA.107.742510. [DOI] [PubMed] [Google Scholar]
  • 19.Galié N, Badesch D, Oudiz R, Simonneau G, McGoon MD, Keogh AM, et al. Ambrisentan therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2005;46:529–35. doi: 10.1016/j.jacc.2005.04.050. [DOI] [PubMed] [Google Scholar]
  • 20.Oudiz RJ, Galiè N, Olschewski H, Torres F, Frost A, Ghofrani HA, et al. Long-term ambrisentan therapy for the treatment of pulmonary arterial hypertension. J Am Coll Cardiol. 2009;54:1971–81. doi: 10.1016/j.jacc.2009.07.033. [DOI] [PubMed] [Google Scholar]
  • 21.Galiè N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353:2148–57. doi: 10.1056/NEJMoa050010. [DOI] [PubMed] [Google Scholar]
  • 22.Galiè N, Humbert M, Vachiéry JL, Vizza CD, Kneussl M, Manes A, et al. Effects of beraprost sodium, an oral prostacyclin analogue, in patients with pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled trial. J Am Coll Cardiol. 2002;39:1496–502. doi: 10.1016/s0735-1097(02)01786-2. [DOI] [PubMed] [Google Scholar]
  • 23.Barst RJ, McGoon M, McLaughlin V, Tapson V, Rich S, Rubin L, et al. Beraprost therapy for pulmonary arterial hypertension. J Am Coll Cardiol. 2003;41:2119–25. doi: 10.1016/s0735-1097(03)00463-7. [DOI] [PubMed] [Google Scholar]
  • 24.Olschewski H, Simonneau G, Galiè N, Higenbottam T, Naeije R, Rubin LJ, et al. Inhaled iloprost for severe pulmonary hypertension. N Engl J Med. 2002;347:322–9. doi: 10.1056/NEJMoa020204. [DOI] [PubMed] [Google Scholar]
  • 25.McLaughlin VV, Benza RL, Rubin LJ, Channick RN, Voswinckel R, Tapson VF, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010;55:915–22. doi: 10.1016/j.jacc.2010.01.027. [DOI] [PubMed] [Google Scholar]
  • 26.Higenbottam TW, Butt AY, Dinh-Xaun AT, Takao M, Cremona G, Akamine S. Treatment of pulmonary hypertension with the continuous infusion of a prostacyclin analogue, iloprost. Heart. 1998;79:175–9. doi: 10.1136/hrt.79.2.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Rubin LJ, Mendoza J, Hood M, McGoon M, Barst R, Williams WB, et al. Treatment of primary pulmonary hypertension with continuous intravenous prostacyclin (epoprostenol).Results of a randomized trial. Ann Intern Med. 1990;112:485–91. doi: 10.7326/0003-4819-112-7-485. [DOI] [PubMed] [Google Scholar]
  • 28.Barst RJ, Rubin LJ, Long WA, McGoon MD, Rich S, Badesch DB, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. The Primary Pulmonary Hypertension Study Group. N Engl J Med. 1996;334:296–301. doi: 10.1056/NEJM199602013340504. [DOI] [PubMed] [Google Scholar]
  • 29.Tapson VF, Gomberg-Maitland M, McLaughlin VV, Benza RL, Widlitz AC, Krichman A, et al. Safety and effi cacy of IV treprostinil for pulmonary arterial hypertension: a prospective, multicenter, open-label, 12-week trial. Chest. 2006;129:683–8. doi: 10.1378/chest.129.3.683. [DOI] [PubMed] [Google Scholar]
  • 30.Gomberg-Maitland M, Tapson VF, Benza RL, McLaughlin VV, Krichman A, Widlitz AC, et al. Transition from intravenous epoprostenol to intravenous treprostinil in pulmonary hypertension. Am J Respir Crit Care Med. 2005;172:1586–9. doi: 10.1164/rccm.200505-766OC. [DOI] [PubMed] [Google Scholar]
  • 31.Simonneau G, Barst RJ, Galie N, Naeije R, Rich S, Bourge RC, et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension: a double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2002;165:800–4. doi: 10.1164/ajrccm.165.6.2106079. [DOI] [PubMed] [Google Scholar]
  • 32.McLaughlin VV, Gaine SP, Barst RJ, Oudiz RJ, Bourge RC, Frost A, et al. Efficacy and safety of treprostinil: an epoprostenol analog for primary pulmonary hypertension. J Cardiovasc Pharmacol. 2003;41:293–9. doi: 10.1097/00005344-200302000-00019. [DOI] [PubMed] [Google Scholar]
  • 33.McLaughlin VV, Benza RL, Rubin LJ, Channick RN, Voswinckel R, Tapson VF, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010;55:1915–22. doi: 10.1016/j.jacc.2010.01.027. [DOI] [PubMed] [Google Scholar]
  • 34.Simonneau G, Rubin LJ, Galiè N, Barst RJ, Fleming TR, Frost AE, et al. Addition of sildenafil to long-term intravenous epoprostenol therapy in patients with pulmonary arterial hypertension: a randomized trial. Ann Intern Med. 2008;149:521–30. doi: 10.7326/0003-4819-149-8-200810210-00004. [DOI] [PubMed] [Google Scholar]
  • 35.Humbert M, Barst RJ, Robbins IM, Channick RN, Galiè N, Boonstra A, et al. Combination of bosentan with epoprostenol in pulmonary arterial hypertension: BREATHE-2. Eur Respir J. 2004;24:353–9. doi: 10.1183/09031936.04.00028404. [DOI] [PubMed] [Google Scholar]
  • 36.Hoeper MM, Leuchte H, Halank M, Wilkens H, Meyer FJ, Seyfarth HJ, et al. Combining inhaled iloprost with bosentan in patients with idiopathic pulmonary arterial hypertension. Eur Respir J. 2006;28:691–4. doi: 10.1183/09031936.06.00057906. [DOI] [PubMed] [Google Scholar]
  • 37.McLaughlin VV, Oudiz RJ, Frost A, Tapson VF, Murali S, Channick RN, et al. Randomized study of adding inhaled iloprost to existing bosentan in pulmonary arterial hypertension. Am J Respir Crit Care Med. 2006;174:1257–63. doi: 10.1164/rccm.200603-358OC. [DOI] [PubMed] [Google Scholar]
  • 38.McLaughlin VV, Benza RL, Rubin LJ, Channick RN, Voswinckel R, Tapson VF, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension: a randomized controlled clinical trial. J Am Coll Cardiol. 2010;55:1915–22. doi: 10.1016/j.jacc.2010.01.027. [DOI] [PubMed] [Google Scholar]

Articles from Pulmonary Circulation are provided here courtesy of Wiley

RESOURCES