Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Feb;78(2):780–784. doi: 10.1073/pnas.78.2.780

Kinetics and mechanism of heme-induced refolding of human α-globin

Yvonne Leutzinger 1,2, Sherman Beychok 1,2,*
PMCID: PMC319886  PMID: 6940147

Abstract

Hemoglobin α and β chains are tightly packed, highly (75%) helical stable molecules. Removal of the heme results in unfolded (30% helical) unstable globin chains that can be refolded to the native conformation by recombination with heme. We have studied the kinetics of heme binding and the ensuing conformational changes by using three stopped-flow techniques: (i) fluorescence quenching, which monitors the spatial orientation and distance between the bound heme and the A12(14)α tryptophan; (ii) absorption at the Soret band maxima, whose position and intensity depend on the local environment of the heme and the nature of the axial ligands; and (iii) far-UV circular dichroism, which directly gauges the recovery of secondary structure. The fluorescence quenching was biphasic: An initial second-order decay, representing 80-85% of the total amplitude, marked the binding of hemin dicyanide to a relatively well-defined site at a rate constant of 3.3 × 107 M-1 sec-1, corresponding to a half-time of 10 msec at 2.4 μM reactants. The Soret absorption and circular dichroism were also multiphasic, all three probes detecting a first-order process of half-time 25-40 sec, during which the final secondary and tertiary structures of the heme pocket were established, and the spatial relationship between the heme and the A12 tryptophan was fixed. A slower circular dichroism change, representing two-thirds of the total backbone refolding, with a half-time of 116 sec, marked the full acquisition of the native subunit conformation. The results show that the residues of the heme pocket achieve or closely approach their final three-dimensional structure well before the entire chain is folded. These measurements represent a direct observation of the rate of prosthetic group-induced secondary structure formation and illustrate the advantages of multiple probe analysis in outlining a protein folding pathway.

Keywords: folding pathways, domains, stopped-flow circular dichroism

Full text

PDF
780

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beychok S. Circular dichroism of biological macromolecules. Science. 1966 Dec 9;154(3754):1288–1299. doi: 10.1126/science.154.3754.1288. [DOI] [PubMed] [Google Scholar]
  2. Breslow E., Koehler R., Girotti A. W. Properties of protoporphyrin-apomyoglobin complexes and related compounds. J Biol Chem. 1967 Sep 25;242(18):4149–4156. [PubMed] [Google Scholar]
  3. Brown S. B., Dean T. C., Jones P. Aggregation of ferrihaems. Dimerization and protolytic equilibria of protoferrihaem and deuteroferrihaem in aqueous solution. Biochem J. 1970 May;117(4):733–739. doi: 10.1042/bj1170733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brown S. B., Hatzikonstantinou H., Herries D. G. The dimerization of ferrihaems. I. The effect of buffer ions and specific cations on deuteroferrihaem dimerization. Biochim Biophys Acta. 1978 Mar 20;539(3):338–351. doi: 10.1016/0304-4165(78)90038-7. [DOI] [PubMed] [Google Scholar]
  5. Brown S. B., Hatzikonstantinou H. The dimerization of ferrihaems. II. Equilibrium and kinetic studies of mesoferrihaem dimerization. Biochim Biophys Acta. 1978 Mar 20;539(3):352–363. doi: 10.1016/0304-4165(78)90039-9. [DOI] [PubMed] [Google Scholar]
  6. Brown S. B., Hatzikonstantinou H. The dimerization of ferrihaems. III. Equilibrium and kinetic studies on the dimerization of coproferrihaem. Biochim Biophys Acta. 1978 Dec 1;544(2):407–417. doi: 10.1016/0304-4165(78)90108-3. [DOI] [PubMed] [Google Scholar]
  7. Brown S. B., Hatzikonstantinou H. The dimerization of ferrihaems. IV. Studies on haematoferrihaem and a general appraisal of the nature and implications of dimerization. Biochim Biophys Acta. 1979 Jun 1;585(1):143–153. doi: 10.1016/0304-4165(79)90334-9. [DOI] [PubMed] [Google Scholar]
  8. Brown S. B., Jones P., Lantzke I. R. Infrared evidence for an oxo-bridged (Fe-O-Fe) haemin dimer. Nature. 1969 Aug 30;223(5209):960–961. doi: 10.1038/223960a0. [DOI] [PubMed] [Google Scholar]
  9. Chu A. H., Bucci E. Effect of polyanions on the kinetics of the reaction of apohemoglobin with carbonmonoxy heme. J Biol Chem. 1979 May 25;254(10):3772–3776. [PubMed] [Google Scholar]
  10. Craik C. S., Buchman S. R., Beychok S. Characterization of globin domains: heme binding to the central exon product. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1384–1388. doi: 10.1073/pnas.77.3.1384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GIBSON Q. H., ANTONINI E. Kinetic studies on the reaction between native globin and haem derivatives. Biochem J. 1960 Nov;77:328–341. doi: 10.1042/bj0770328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GIBSON Q. H., ANTONINI E. Rates of reaction of native human globin with some hemes. J Biol Chem. 1963 Apr;238:1384–1388. [PubMed] [Google Scholar]
  13. Javaherian K., Beychok S. Subunit interactions in the conformational change of horse apohemoglobin on binding of hemin. J Mol Biol. 1968 Oct 14;37(1):1–11. doi: 10.1016/0022-2836(68)90069-7. [DOI] [PubMed] [Google Scholar]
  14. La Mar G. N., Viscio D. B. Letter: Nuclear magnetic resonance study of stereospecific dimerization of dicyanohemin. J Am Chem Soc. 1974 Nov 13;96(23):7354–7355. doi: 10.1021/ja00830a033. [DOI] [PubMed] [Google Scholar]
  15. Luchins J., Beychok S. Far-ultraviolet stopped-flow circular dichroism. Science. 1978 Jan 27;199(4327):425–426. doi: 10.1126/science.619462. [DOI] [PubMed] [Google Scholar]
  16. Morgan W. T., Sutor R. P., Muller-Eberhard U. The aromatic and heme chromophores of rabbit hemopexin. Difference absorption and fluorescence spectra. Biochim Biophys Acta. 1976 Jun 15;434(2):311–323. doi: 10.1016/0005-2795(76)90223-3. [DOI] [PubMed] [Google Scholar]
  17. Némethy G., Scheraga H. A. Protein folding. Q Rev Biophys. 1977 Aug;10(3):239–252. doi: 10.1017/s0033583500002936. [DOI] [PubMed] [Google Scholar]
  18. Tsong T. Y. Ferricytochrome c chain folding measured by the energy transfer of tryptophan 59 to the heme group. Biochemistry. 1976 Dec 14;15(25):5467–5473. doi: 10.1021/bi00670a007. [DOI] [PubMed] [Google Scholar]
  19. Waks M., Yip Y. K., Beychok S. Influence of prosthetic groups on protein folding and subunit assembly. Recombination of separated human alpha-and beta-globin chains with heme and alloplex interactions of globin chains with heme-containing subunits. J Biol Chem. 1973 Sep 25;248(18):6462–6470. [PubMed] [Google Scholar]
  20. Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc Natl Acad Sci U S A. 1973 Mar;70(3):697–701. doi: 10.1073/pnas.70.3.697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yip Y. K., Waks M., Beychok S. Influence of prosthetic groups on protein folding and subunit assembly. I. Conformational differences between separated human alpha- and beta- globins. J Biol Chem. 1972 Nov 25;247(22):7237–7244. [PubMed] [Google Scholar]
  22. Yip Y. K., Waks M., Beychok S. Reconstitution of native human hemoglobin from separated globin chains and alloplex intermediates. Proc Natl Acad Sci U S A. 1977 Jan;74(1):64–68. doi: 10.1073/pnas.74.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES