Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Feb;78(2):838–842. doi: 10.1073/pnas.78.2.838

HeLa cell DNA polymerase alpha is tightly associated with tryptophanyl-tRNA synthetase and diadenosine 5',5"'-P1,P4-tetraphosphate binding activities.

E Rapaport, P C Zamecnik, E F Baril
PMCID: PMC319898  PMID: 6940151

Abstract

The purified high molecular weight form of HeLa cell DNA polymerase alpha (deoxynucleosidetriphosphate: DNA deoxynucleotidyltransferase, EC 2.7.7.7) was shown to associate tightly with several aminoacyl-tRNA synthetase activities. Fractionation of the high molecular weight enzyme on hexylagarose followed by gel filtration, chromatography on phosphocellulose, or polyacrylamide gel electrophoresis under nondenaturing conditions demonstrated copurification of only tryptophanyl-tRNA synthetase [L-tryptophan:tRNATrp ligase (AMP-forming), EC 6.1.1.2] along with DNA polymerase alpha. The high molecular weight (660,000) and low molecular weight (145,000) forms of DNA polymerase alpha were shown to possess a highly specific, noncovalent, diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) binding activity. The dissociation constants were determined to be 16 and 22 microM, respectively, by utilization of a charcoal adsorption procedure. No high-affinity binding of ATP could be detected. These findings suggest a link between the amino acid activation process and DNA replication in mammalian cells.

Full text

PDF
838

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baril E., Mitchener J., Lee L., Baril B. Action of pancreatic DNase: requirements for activation of DNA as a template-primer for DNA polymerase. Nucleic Acids Res. 1977 Aug;4(8):2641–2653. doi: 10.1093/nar/4.8.2641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chiu R. W., Baril E. F. Nuclear DNA polymerases and the HeLa cell cycle. J Biol Chem. 1975 Oct 10;250(19):7951–7957. [PubMed] [Google Scholar]
  3. Dorizzi M., Labouesse B., Labouesse J. Isolation and stoichiometry of beef pancreas tryptophanyl-tRNA synthetase complexes with tryptophan and tryptophanyladenylate. Eur J Biochem. 1971 Apr 30;19(4):563–572. doi: 10.1111/j.1432-1033.1971.tb01350.x. [DOI] [PubMed] [Google Scholar]
  4. Fichot O., Pascal M., Mechali M., de Recondo A. M. DNA polymerase-alpha from regenerating rat liver. Catalytic properties of the highly purified enzyme. Biochim Biophys Acta. 1979 Jan 26;561(1):29–41. doi: 10.1016/0005-2787(79)90487-8. [DOI] [PubMed] [Google Scholar]
  5. Fisher P. A., Korn D. DNA polymerase-alpha. Purification and structural characterization of the near homogeneous enzyme from human KB cells. J Biol Chem. 1977 Sep 25;252(18):6528–6535. [PubMed] [Google Scholar]
  6. Grummt F. Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):371–375. doi: 10.1073/pnas.75.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Grummt F., Waltl G., Jantzen H. M., Hamprecht K., Huebscher U., Kuenzle C. C. Diadenosine 5',5'''-P1,P4-tetraphosphate, a ligand of the 57-kilodalton subunit of DNA polymerase alpha. Proc Natl Acad Sci U S A. 1979 Dec;76(12):6081–6085. doi: 10.1073/pnas.76.12.6081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. HOAGLAND M. B., KELLER E. B., ZAMECNIK P. C. Enzymatic carboxyl activation of amino acids. J Biol Chem. 1956 Jan;218(1):345–358. [PubMed] [Google Scholar]
  9. Holmes A. M., Hesslewood I. P., Johnston I. R. Evidence that DNA polymerase-alpha of calf thymus contains a subunit of molecular weight 155000. Eur J Biochem. 1976 Feb 16;62(2):229–235. doi: 10.1111/j.1432-1033.1976.tb10152.x. [DOI] [PubMed] [Google Scholar]
  10. Joseph D. R., Muench K. H. Tryptophanyl transfer ribonucleic acid synthetase of Escherichia coli. II. Molecular weight, subunit structure, sulfhydryl content, and substrate-binding properties. J Biol Chem. 1971 Dec 25;246(24):7610–7615. [PubMed] [Google Scholar]
  11. Kisselev L. L., Favorova O. O., Kovaleva G. K. Tryptophanyl-tRNA synthetase from beef pancreas. Methods Enzymol. 1979;59:234–257. doi: 10.1016/0076-6879(79)59087-9. [DOI] [PubMed] [Google Scholar]
  12. Kolodny N. H., Kisteneff E., Redfield C., Rapaport E. Ap4A and Ap5A prefer folded unstacked conformations at pH 4-5, in sharp contrast with Ap2A and Ap3A. FEBS Lett. 1979 Nov 1;107(1):121–124. doi: 10.1016/0014-5793(79)80477-9. [DOI] [PubMed] [Google Scholar]
  13. Kozarich J. W., Chinault A. C., Hecht S. M. Ribonucleoside phosphates via phosphorimidazolidate intermediates. Synthesis of pseudoadenosine 5'-triphosphate. Biochemistry. 1973 Oct 23;12(22):4458–4463. doi: 10.1021/bi00746a024. [DOI] [PubMed] [Google Scholar]
  14. Mechali M., Abadiedebat J., de Recondo A. M. Eukaryotic DNA polymerase alpha. Structural analysis of the enzyme from regenerating rat liver. J Biol Chem. 1980 Mar 10;255(5):2114–2122. [PubMed] [Google Scholar]
  15. Novak B., Baril E. F. HeLa DNA polymerase alpha activity in vitro: specific stimulation by a non-enzymic protein factor. Nucleic Acids Res. 1978 Jan;5(1):221–239. doi: 10.1093/nar/5.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Prem veer Reddy G., Pardee A. B. Multienzyme complex for metabolic channeling in mammalian DNA replication. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3312–3316. doi: 10.1073/pnas.77.6.3312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Rapaport E., Berkley P. D., Bucher N. L. Charcoal adsorption assay for measurement of colchicine binding and tubulin content of crude tissue extracts. Anal Biochem. 1975 Nov;69(1):92–99. doi: 10.1016/0003-2697(75)90570-9. [DOI] [PubMed] [Google Scholar]
  18. Rapaport E., Garcia-Blanco M. A., Zamecnik P. C. Regulation of DNA replication in S phase nuclei by ATP and ADP pools. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1643–1647. doi: 10.1073/pnas.76.4.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rapaport E., Zamecnik P. C. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988. doi: 10.1073/pnas.73.11.3984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rousseau G. G., Baxter J. D., Tomkins G. M. Glucocorticoid receptors: relations between steroid binding and biological effects. J Mol Biol. 1972 Jun 14;67(1):99–115. doi: 10.1016/0022-2836(72)90389-0. [DOI] [PubMed] [Google Scholar]
  21. Schaffner W., Weissmann C. A rapid, sensitive, and specific method for the determination of protein in dilute solution. Anal Biochem. 1973 Dec;56(2):502–514. doi: 10.1016/0003-2697(73)90217-0. [DOI] [PubMed] [Google Scholar]
  22. Tomkins G. M. The metabolic code. Science. 1975 Sep 5;189(4205):760–763. doi: 10.1126/science.169570. [DOI] [PubMed] [Google Scholar]
  23. Weissbach A. Eukaryotic DNA polymerases. Annu Rev Biochem. 1977;46:25–47. doi: 10.1146/annurev.bi.46.070177.000325. [DOI] [PubMed] [Google Scholar]
  24. Zamecnik P. C., Stephenson M. L., Janeway C. M., Randerath K. Enzymatic synthesis of diadenosine tetraphosphate and diadenosine triphosphate with a purified lysyl-sRNA synthetase. Biochem Biophys Res Commun. 1966 Jul 6;24(1):91–97. doi: 10.1016/0006-291x(66)90415-3. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES