Abstract
At saturating carbamoylphosphate and nonsaturating aspartate concentrations, Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Al3+, and Gd3+ inhibit aspartate carbamoyltransferase (carbamoylphosphate:L-asparate carbamoyltransferase, EC 2.1.3.2) from EScherichia coli. When nucleotide triphosphates are present, these inhibitory effects are displaced to higher concentrations of cation. At lower levels of cation and saturating carbamoylphosphate concentration, Mg2+, Mn2+, Al3+, and Gd3+ partially relieve allosteric inhibition by GTP but have little influence on activation by ATP and inhibition by CTP. At nonsaturating carbamoylphosphate concentrations, however, Mg2+, Mn2+, Al3+, and Gd3+ increase enzymatic activity to 170% over the level when GTP alone is present. In addition, Mg2+, Mn2+, and Al3+ show enhancement of ATP activation by 120-130% but only slight relief of CTP inhibition. We suggest that three modes of action by the metal can account for the observed kinetic behavior. (i) In the absence of nucleotide, metals inhibit catalytic activity either by a direct interaction with the enzyme or indirectly by complexing carbamoylphosphate. (ii) The metal-nucleotide complex interacts allosterically with the enzyme to enhance enzymatic activity relative to that produced by the free nucleotide, as noted above. (iii) By chelating to nucleotides, the metal diminishes their tendency to bind competitively at the carbamoylphosphate portion of the active site, as shown particularly by experiments on the catalytic subunit.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BOCK R. M., LING N. S., MORELL S. A., LIPTON S. H. Ultraviolet absorption spectra of adenosine-5'-triphosphate and related 5'-ribonucleotides. Arch Biochem Biophys. 1956 Jun;62(2):253–264. doi: 10.1016/0003-9861(56)90123-0. [DOI] [PubMed] [Google Scholar]
- BURTON K. Formation constants for the complexes of adenosine di- or tri-phosphate with magnesium or calcium ions. Biochem J. 1959 Feb;71(2):388–395. doi: 10.1042/bj0710388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bethell M. R., Smith K. E., White J. S., Jones M. E. Carbamyl phosphate: an allosteric substrate for aspartate transcarbamylase of Escherichia coli. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1442–1449. doi: 10.1073/pnas.60.4.1442. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christopherson R. I., Finch L. R. Regulation of aspartate carbamoyltransferase of Escherichia coli by the interrelationship of magnesium and nucleotides. Biochim Biophys Acta. 1977 Mar 15;481(1):80–85. doi: 10.1016/0005-2744(77)90139-5. [DOI] [PubMed] [Google Scholar]
- Cook R. A., Milne J. A. An effect of enzyme and ligand concentration on the state of aggregation of aspartate transcarbamylase of E. coli: I. The binding of CTP and ATP to the enzyme. Can J Biochem. 1977 Apr;55(4):346–358. doi: 10.1139/o77-048. [DOI] [PubMed] [Google Scholar]
- Davies G. E., Vanaman T. C., Stark G. R. Aspartate transcarbamylase. Stereospecific restrictions on the binding site for L-aspartate. J Biol Chem. 1970 Mar 10;245(5):1175–1179. [PubMed] [Google Scholar]
- GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
- Gerhart J. C., Schachman H. K. Distinct subunits for the regulation and catalytic activity of aspartate transcarbamylase. Biochemistry. 1965 Jun;4(6):1054–1062. doi: 10.1021/bi00882a012. [DOI] [PubMed] [Google Scholar]
- Gray C. W., Chamberlin M. J., Gray D. M. Interaction of aspartate transcarbamylase with regulatory nucleotides. J Biol Chem. 1973 Sep 10;248(17):6071–6079. [PubMed] [Google Scholar]
- Heyde E. Interaction between polypeptide chains within the catalytic subunit of aspartate transcarbamylase. Biochim Biophys Acta. 1973 Feb 15;293(2):351–358. doi: 10.1016/0005-2744(73)90343-4. [DOI] [PubMed] [Google Scholar]
- Honzatko R. B., Monaco H. L., Lipscomb W. N. A 3.0-A resolution study of nucleotide complexes with aspartate carbamoyltransferase. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5105–5109. doi: 10.1073/pnas.76.10.5105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleppe K., Spaeren U. Aspartate transcarbamylase from Escherichia coli. II. Interaction of metal ions with substrates, inhibitors and activators. Biochim Biophys Acta. 1966 Oct 17;128(1):199–202. doi: 10.1016/0926-6593(66)90161-5. [DOI] [PubMed] [Google Scholar]
- Landfear S. M., Lipscomb W. N., Evans D. R. Functional modifications of aspartate transcarbamylase induced by nitration with tetranitromethane. J Biol Chem. 1978 Jun 10;253(11):3988–3996. [PubMed] [Google Scholar]
- London R. E., Schmidt P. G. A model for nucleotide regulation of aspartate transcarbamylase. Biochemistry. 1972 Aug 1;11(16):3136–3142. doi: 10.1021/bi00766a029. [DOI] [PubMed] [Google Scholar]
- Matsumoto S., Hammes G. G. An equilibrium binding study of the interaction of aspartate transcarbamylase with cytidine 5'-triphosphate and adenosine 5'-triphosphate. Biochemistry. 1973 Mar 27;12(7):1388–1394. doi: 10.1021/bi00731a019. [DOI] [PubMed] [Google Scholar]
- Porter R. W., Modebe M. O., Stark G. R. Aspartate transcarbamylase. Kinetic studies of the catalytic subunit. J Biol Chem. 1969 Apr 10;244(7):1846–1859. [PubMed] [Google Scholar]
- Suter P., Rosenbusch J. P. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase. J Biol Chem. 1977 Nov 25;252(22):8136–8141. [PubMed] [Google Scholar]
- Viola R. E., Morrison J. F., Cleland W. W. Interaction of metal(III)-adenosine 5'-triphosphate complexes with yeast hexokinase. Biochemistry. 1980 Jul 8;19(14):3131–3137. doi: 10.1021/bi00555a003. [DOI] [PubMed] [Google Scholar]
- Winlund C. C., Chamberlin M. J. Binding of cytidine triphosphate to aspartate transcarbamylase. Biochem Biophys Res Commun. 1970 Jul 13;40(1):43–49. doi: 10.1016/0006-291x(70)91043-0. [DOI] [PubMed] [Google Scholar]
