Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Feb;78(2):986–990. doi: 10.1073/pnas.78.2.986

Transport of sodium, chloride, and taurocholate by cultured rat hepatocytes

Bruce F Scharschmidt 1, Jeffery E Stephens 1
PMCID: PMC319930  PMID: 6940160

Abstract

Transport of sodium, chloride, and taurocholate was studied in primary cultures of adult rat hepatocytes incubated in a balanced electrolyte solution containing 150 mM NaCl, various concentrations of taurocholate, and 22Na, 36Cl, [3H]taurocholate, and 3-O-[3H]methyl-D-glucose. Lithium chloride, choline chloride, or Na2SO4 and mannitol were substituted isotonically for NaCl in selected studies. The steady-state intracellular concentrations of exchangeable sodium and chloride averaged 6.5 mM and 30.1 mM, respectively. Ouabain reversibly increased intracellular sodium concentration. Chloride entry rate was about double that of sodium. Unlike sodium entry, chloride entry rate increased nonlinearly with increasing extracellular concentration. Taurocholate entry exhibited both saturable and nonsaturable components; the former accounting for virtually all taurocholate uptake at concentrations comparable to those found in vivo. Taurocholate was actively concentrated by the cultured cells, with the steady-state intracellular-to-extracellular concentration ratio decreasing from over 50 to about 1 as extracellular taurocholate concentration was increased from 10 μM to 4 mM. Both the saturable uptake component and concentrative taurocholate transport were virtually abolished by substitution of choline or lithium for sodium or by addition of ouabain. Taurocholate entry rate first increased in a sigmoid fashion and then decreased as extracellular sodium concentration was increased from 0 to 150 mM. Sodium entry rate increased in the presence of added taurocholate with an average of one sodium ion accompanying each taurocholate molecule into the cell. These findings indicate that sodium and chloride differ strikingly in their mechanism and rate of entry into cultured rat hepatocytes and in their intracellular concentration. Moreover, hepatocytes concentrate taurocholate by a sodium-coupled mechanism with an apparently equimolar transport stoichiometry.

Keywords: sodium-coupled transport, bile acid

Full text

PDF
986

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Admirand W. H., Small D. M. The physicochemical basis of cholesterol gallstone formation in man. J Clin Invest. 1968 May;47(5):1043–1052. doi: 10.1172/JCI105794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anwer M. S., Hegner D. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe Seylers Z Physiol Chem. 1978 Feb;359(2):181–192. [PubMed] [Google Scholar]
  3. Bissell D. M., Hammaker L. E., Meyer U. A. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. I. Functional studies. J Cell Biol. 1973 Dec;59(3):722–734. doi: 10.1083/jcb.59.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bissell D. M. Study of hepatocyte function in cell culture. Prog Liver Dis. 1976;5:69–82. [PubMed] [Google Scholar]
  5. Boyer J. L. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol. 1971 Oct;221(4):1156–1163. doi: 10.1152/ajplegacy.1971.221.4.1156. [DOI] [PubMed] [Google Scholar]
  6. Boyer J. L., Reno D. Properties of (Na+ plus K+)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi. Biochim Biophys Acta. 1975 Aug 5;401(1):59–72. doi: 10.1016/0005-2736(75)90341-7. [DOI] [PubMed] [Google Scholar]
  7. Claret M., Mazet J. L. Ionic fluxes and permeabilities of cell membranes in rat liver. J Physiol. 1972 Jun;223(2):279–295. doi: 10.1113/jphysiol.1972.sp009847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dietmaier A., Gasser R., Graf J., Peterlik M. Investigations on the sodium dependence of bile acid fluxes in the isolated perfused rat liver. Biochim Biophys Acta. 1976 Aug 4;443(1):81–91. doi: 10.1016/0005-2736(76)90492-2. [DOI] [PubMed] [Google Scholar]
  9. Duane W. C. The intermicellar bile salt concentration in equilibrium with the mixed-micelles of human bile. Biochim Biophys Acta. 1975 Aug 25;398(2):275–286. doi: 10.1016/0005-2760(75)90143-5. [DOI] [PubMed] [Google Scholar]
  10. Erlinger S. Hepatocellular uptake of taurocholate in the dog. J Clin Invest. 1975 Feb;55(2):419–426. doi: 10.1172/JCI107946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Forker E. L. Mechanisms of hepatic bile formation. Annu Rev Physiol. 1977;39:323–347. doi: 10.1146/annurev.ph.39.030177.001543. [DOI] [PubMed] [Google Scholar]
  12. Frizzell R. A., Dugas M. C., Schultz S. G. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process. J Gen Physiol. 1975 Jun;65(6):769–795. doi: 10.1085/jgp.65.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  14. GORESKY C. A. THE HEPATIC UPTAKE AND EXCRETION OF SULFOBROMOPHTHALEIN AND BILIRUBIN. Can Med Assoc J. 1965 Apr 17;92:851–857. [PMC free article] [PubMed] [Google Scholar]
  15. Graf J., Peterlik M. Ouabain-mediated sodium uptake and bile formation by isolated perfused rat liver. Am J Physiol. 1976 Apr;230(4):876–885. doi: 10.1152/ajplegacy.1976.230.4.876. [DOI] [PubMed] [Google Scholar]
  16. Graf J., Petersen O. H. Cell membrane potential and resistance in liver. J Physiol. 1978 Nov;284:105–126. doi: 10.1113/jphysiol.1978.sp012530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hopfer U., Groseclose R. The mechanism of Na+-dependent D-glucose transport. J Biol Chem. 1980 May 25;255(10):4453–4462. [PubMed] [Google Scholar]
  18. Kletzien R. F., Pariza M. W., Becker J. E., Potter V. R. A method using 3-O-methyl-D-glucose and phloretin for the determination of intracellular water space of cells in monolayer culture. Anal Biochem. 1975 Oct;68(2):537–544. doi: 10.1016/0003-2697(75)90649-1. [DOI] [PubMed] [Google Scholar]
  19. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  20. Lindblad L., Lundholm K., Schersten T. Bile acid concentrations in systemic and portal serum in presumably normal man and in cholestatic and cirrhotic conditions. Scand J Gastroenterol. 1977;12(4):395–400. doi: 10.3109/00365527709181679. [DOI] [PubMed] [Google Scholar]
  21. Lucci M. S., Warnock D. G. Effects of anion-transport inhibitors on NaCl reabsorption in the rat superficial proximal convoluted tubule. J Clin Invest. 1979 Aug;64(2):570–579. doi: 10.1172/JCI109495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lücke H., Stange G., Kinne R., Murer H. Taurocholate--sodium co-transport by brush-border membrane vesicles isolated from rat ileum. Biochem J. 1978 Sep 15;174(3):951–958. doi: 10.1042/bj1740951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pries J. M., Sherman C. A., Williams G. C., Hanson R. F. Hepatic extraction of bile salts in conscious dogs. Am J Physiol. 1979 Feb;236(2):E191–E197. doi: 10.1152/ajpendo.1979.236.2.E191. [DOI] [PubMed] [Google Scholar]
  24. Reichen J., Paumgartner G. Kinetics of taurocholate uptake by the perfused rat liver. Gastroenterology. 1975 Jan;68(1):132–136. [PubMed] [Google Scholar]
  25. Reichen J., Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976 Sep;231(3):734–742. doi: 10.1152/ajplegacy.1976.231.3.734. [DOI] [PubMed] [Google Scholar]
  26. Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
  27. Schwarz L. R., Burr R., Schwenk M., Pfaff E., Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem. 1975 Jul 15;55(3):617–623. doi: 10.1111/j.1432-1033.1975.tb02199.x. [DOI] [PubMed] [Google Scholar]
  28. Williams J. A., Withrow C. D., Woodbury D. M. Effects of ouabain and diphenylhydantoin on transmembrane potentials, intracellular electrolytes, and cell pH of rat muscle and liver in vivo. J Physiol. 1971 Jan;212(1):101–115. doi: 10.1113/jphysiol.1971.sp009312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Williams J. A., Woodbury D. M. Determination of extracellular space and intracellular electrolytes in rat liver in vivo. J Physiol. 1971 Jan;212(1):85–99. doi: 10.1113/jphysiol.1971.sp009311. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES