Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Feb;78(2):1237–1241. doi: 10.1073/pnas.78.2.1237

alpha-adrenergic antagonists as possible calcium channel inhibitors.

D Atlas, M Adler
PMCID: PMC319983  PMID: 6112742

Abstract

The effects of various organic Ca2+ channel inhibitors were investigated on the binding of the alpha 1-antagonist 3H-labeled 2-[(2',6'-dimethoxyphenoxyethyl)aminomethyl]-1,4-benzodioxane ([3H]WB-4101) to membranes from rat brain and neuroblastoma-glioma hybrid cells (NG108-15). As found by monitoring binding of [3H]WB-41-1, the Ca2+ channel inhibitors methoxyverapamil (D600), verapamil, and the nifedipine analogue YC-93 bind to two different sites in rat brain: a high-affinity site (dissociation constant Kd = 2.9 nM and binding capacity B = 360 fmol/mg of protein) and a low-affinity site (Kd = 260 nM and B = 2700 fmol/mg of protein). In NG108-15 cells, where no alpha 1 receptors were detected with [3H]WB-4101, the Ca2+ antagonists were found to bind to nonadrenergic sites in the membrane with a capacity B = 976 fmol/mg of protein. The binding of Ca2+ antagonists to [3H]WB-41-1 sites led to the investigation of WB-4101 as a Ca2+ inhibitor by electrophysiological techniques. WB-4101 depressed the amplitude and reduced the rate of rise of the CA2+ spike with an affinity slightly greater than that observed for D600. The concentration for 50% inhibition of the Ca2+ spike amplitude was 48 microM for WB-4101 and 80 microM for D600. The WB-4101-induced blockade of the Ca2+ spike was antagonized by high Ca2+ concentrations, indicating a common site for Ca2+ and the alpha-antagonist. D600 and WB-4101 also inhibited voltage-dependent Na+ and K+ conductances. The results suggest that Ca2+ channels can account for a fraction of the sites labeled with [3H]WB-4101 in membrane preparations from brain and NG108-15 cells.

Full text

PDF
1237

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Moore A. C., Levinson S. R., Raftery M. A. Identification of a large molecular weight peptide associated with a tetrodotoxin binding protein from the electroplax of Electrophorus electricus. Biochem Biophys Res Commun. 1980 Feb 12;92(3):860–866. doi: 10.1016/0006-291x(80)90782-2. [DOI] [PubMed] [Google Scholar]
  2. Beneski D. A., Catterall W. A. Covalent labeling of protein components of the sodium channel with a photoactivable derivative of scorpion toxin. Proc Natl Acad Sci U S A. 1980 Jan;77(1):639–643. doi: 10.1073/pnas.77.1.639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berthelsen S., Pettinger W. A. A functional basis for classification of alpha-adrenergic receptors. Life Sci. 1977 Sep 1;21(5):595–606. doi: 10.1016/0024-3205(77)90066-2. [DOI] [PubMed] [Google Scholar]
  4. Blaustein M. P., Goldman D. E. Competitive action of calcium and procaine on lobster axon. A study of the mechanism of action of certain local anesthetics. J Gen Physiol. 1966 May;49(5):1043–1063. doi: 10.1085/jgp.49.5.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fairhurst A. S., Whittaker M. L., Ehlert F. J. Interactions of D600 (methoxyverapamil) and local anesthetics with rat brain alpha-adrenergic and muscarinic receptors. Biochem Pharmacol. 1980 Feb;29(2):155–162. doi: 10.1016/0006-2952(80)90323-8. [DOI] [PubMed] [Google Scholar]
  6. Fleckenstein A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Annu Rev Pharmacol Toxicol. 1977;17:149–166. doi: 10.1146/annurev.pa.17.040177.001053. [DOI] [PubMed] [Google Scholar]
  7. Galper J. B., Catterall W. A. Inhibition of sodium channels by D600. Mol Pharmacol. 1979 Jan;15(1):174–178. [PubMed] [Google Scholar]
  8. Guicheney P., Garay R. P., Levy-Marchal C., Meyer P. Biochemical evidence for presynaptic and postsynaptic alpha-adrenoceptors in rat heart membranes: positive homotropic cooperativity of presynaptic binding. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6285–6289. doi: 10.1073/pnas.75.12.6285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hagiwara S. Ca spike. Adv Biophys. 1973;4:71–102. [PubMed] [Google Scholar]
  10. Hoffman B. B., Lefkowitz R. J. An assay for alpha-adrenergic receptor subtypes using [3H]dihydroergocryptine. Biochem Pharmacol. 1980 Feb;29(3):452–454. doi: 10.1016/0006-2952(80)90528-6. [DOI] [PubMed] [Google Scholar]
  11. Kapur H., Mottram D. R. A comparative study on the pre- and post-synaptic alpha blocking activity of a series of benzodioxanes. Biochem Pharmacol. 1978;27(14):1879–1880. doi: 10.1016/0006-2952(78)90036-9. [DOI] [PubMed] [Google Scholar]
  12. Kapur H., Rouot B., Snyder S. H. Binding to alpha-adrenergic receptors: differential pharmacological potencies and binding affinities of benzodioxanes. Eur J Pharmacol. 1979 Aug 15;57(4):317–328. doi: 10.1016/0014-2999(79)90494-1. [DOI] [PubMed] [Google Scholar]
  13. Kass R. S., Tsien R. W. Multiple effects of calcium antagonists on plateau currents in cardiac Purkinje fibers. J Gen Physiol. 1975 Aug;66(2):169–192. doi: 10.1085/jgp.66.2.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Langer S. Z. Presynaptic regulation of catecholamine release. Biochem Pharmacol. 1974 Jul 1;23(13):1793–1800. doi: 10.1016/0006-2952(74)90187-7. [DOI] [PubMed] [Google Scholar]
  16. McGee R., Jr, Schneider J. E. Inhibition of high affinity synaptosomal uptake systems by verapamil. Mol Pharmacol. 1979 Nov;16(3):877–885. [PubMed] [Google Scholar]
  17. Moolenaar W. H., Spector I. The calcium action potential and a prolonged calcium dependent after-hyperpolarization in mouse neuroblastoma cells. J Physiol. 1979 Jul;292:297–306. doi: 10.1113/jphysiol.1979.sp012851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Nachshen D. A., Blaustein M. P. The effects of some organic "calcium antagonists" on calcium influx in presynaptic nerve terminals. Mol Pharmacol. 1979 Sep;16(2):576–586. [PubMed] [Google Scholar]
  19. Peroutka S. J., Greenberg D. A., U'Prichard D. C., Snyder S. H. Regional variations in alpha adrenergic receptor interactions of [3H]-dihydroergokryptine in calf brain: implications for a two-site model of alpha receptor function. Mol Pharmacol. 1978 May;14(3):403–412. [PubMed] [Google Scholar]
  20. Ray R., Morrow C. S., Catterall W. A. Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J Biol Chem. 1978 Oct 25;253(20):7307–7313. [PubMed] [Google Scholar]
  21. Rehavi M., Yavetz B., Ramot O., Sokolovsky M. Regional heterogeneity of two high affinity binding sites for 3H-WB-4101 in mouse brain. Life Sci. 1980 Feb 25;26(8):615–621. doi: 10.1016/0024-3205(80)90237-4. [DOI] [PubMed] [Google Scholar]
  22. Reiser G., Heumann R., Kemper W., Lautenschlager E., Hamprecht B. Influence of cations on the electrical activity of neuroblastoma X glioma hybrid cells. Brain Res. 1977 Jul 22;130(3):495–504. doi: 10.1016/0006-8993(77)90111-1. [DOI] [PubMed] [Google Scholar]
  23. Ritchie J. M., Rogart R. B., Strichartz G. R. A new method for labelling saxitoxin and its binding to non-myelinated fibres of the rabbit vagus, lobster walking leg, and garfish olfactory nerves. J Physiol. 1976 Oct;261(2):477–494. doi: 10.1113/jphysiol.1976.sp011569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sabol S. L., Nirenberg M. Regulation of adenylate cyclase of neuroblastoma x glioma hybrid cells by alpha-adrenergic receptors. I. Inhibition of adenylate cyclase mediated by alpha receptors. J Biol Chem. 1979 Mar 25;254(6):1913–1920. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES