Abstract
Rat brain synaptosomes isolated on discontinuous Ficoll gradient carry out rapid net uptake of gamma-aminobutyric acid through a high-affinity system (Km = 6.25 microM; Vmax = 1.2 nmol/min per mg of protein). The uptake of the labeled neurotransmitter is dependent on sodium concentration and is abolished by addition of 40 microM veratridine or 0.5 mM 2,4-diaminobutyric acid. Homoexchange in this preparation accounts for less than 10% of the measured uptake of gamma-amino[14C]butyric acid. It is concluded that the high-affinity transport exhibits properties characteristic of a system that is responsible for the rapid removal of gamma-aminobutyric acid from the synaptic cleft after neuronal transmission.
Full text
PDF


Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Booth R. F., Clark J. B. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem J. 1978 Nov 15;176(2):365–370. doi: 10.1042/bj1760365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CURTIS D. R., WATKINS J. C. The excitation and depression of spinal neurones by structurally related amino acids. J Neurochem. 1960 Sep;6:117–141. doi: 10.1111/j.1471-4159.1960.tb13458.x. [DOI] [PubMed] [Google Scholar]
- Deutsch C., Rafalowska U. Transmembrane electrical potential measurements in rat brain synaptosomes. FEBS Lett. 1979 Dec 1;108(1):274–278. doi: 10.1016/0014-5793(79)81227-2. [DOI] [PubMed] [Google Scholar]
- Dichter M. A. Physiological identification of GABA as the inhibitory transmitter for mammalian cortical neurons in cell culture. Brain Res. 1980 May 19;190(1):111–121. doi: 10.1016/0006-8993(80)91163-4. [DOI] [PubMed] [Google Scholar]
- Fahn S., Côté L. J. Regional distribution of gamma-aminobutyric acid (GABA) in brain of the rhesus monkey. J Neurochem. 1968 Mar;15(3):209–213. doi: 10.1111/j.1471-4159.1968.tb06198.x. [DOI] [PubMed] [Google Scholar]
- Hitzemann R. J., Loh H. H. High-affinity GABA and glutamate transport in developing nerve ending particles. Brain Res. 1978 Dec 22;159(1):29–40. doi: 10.1016/0006-8993(78)90107-5. [DOI] [PubMed] [Google Scholar]
- Hösli E., Hösli L. Autoradiographic studies on the uptake of 3H-noradrenaline and 3H-GABA in cultured rat cerebellum. Exp Brain Res. 1976 Oct 28;26(3):319–324. doi: 10.1007/BF00234935. [DOI] [PubMed] [Google Scholar]
- Hösli L., Hösli E. Action and uptake of neurotransmitters in CNS tissue culture. Rev Physiol Biochem Pharmacol. 1978;81:135–188. doi: 10.1007/BFb0034093. [DOI] [PubMed] [Google Scholar]
- Iversen L. L., Kelly J. S. Uptake and metabolism of gamma-aminobutyric acid by neurones and glial cells. Biochem Pharmacol. 1975 May 1;24(9):933–938. doi: 10.1016/0006-2952(75)90422-0. [DOI] [PubMed] [Google Scholar]
- Iversen L. L. Role of transmitter uptake mechanisms in synaptic neurotransmission. Br J Pharmacol. 1971 Apr;41(4):571–591. doi: 10.1111/j.1476-5381.1971.tb07066.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krnjević K., Schwartz S. The action of gamma-aminobutyric acid on cortical neurones. Exp Brain Res. 1967;3(4):320–336. doi: 10.1007/BF00237558. [DOI] [PubMed] [Google Scholar]
- Levi G., Bertollini A., Chen J., Raiteri M. Regional differences in the synaptosomal uptake of 3H-gamma-aminobutyric acid and 14C-glutamate and possible role of exchange processes. J Pharmacol Exp Ther. 1974 Feb;188(2):429–438. [PubMed] [Google Scholar]
- Levi G., Poce U., Raiteri M. Uptake and exchange of GABA and glutamate in isolated nerve endings. Adv Exp Med Biol. 1976;69:273–289. doi: 10.1007/978-1-4684-3264-0_21. [DOI] [PubMed] [Google Scholar]
- Levi G., Raiteri M. Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake. Nature. 1974 Aug 30;250(5469):735–737. doi: 10.1038/250735a0. [DOI] [PubMed] [Google Scholar]
- Martin D. L. Kinetics of the sodium-dependent transport of gamma-aminobutyric acid by synaptosomes. J Neurochem. 1973 Aug;21(2):345–356. doi: 10.1111/j.1471-4159.1973.tb04255.x. [DOI] [PubMed] [Google Scholar]
- Rafałowska U., Erecińska M., Wilson D. F. Energy metabolism in rat brain synaptosomes from nembutal-anesthetized and nonanesthetized animals. J Neurochem. 1980 Jun;34(6):1380–1386. doi: 10.1111/j.1471-4159.1980.tb11218.x. [DOI] [PubMed] [Google Scholar]
- Rafałowska U., Erecińska M., Wilson D. F. The effect of acute hypoxia on synaptosomes from rat brain. J Neurochem. 1980 May;34(5):1160–1165. doi: 10.1111/j.1471-4159.1980.tb09955.x. [DOI] [PubMed] [Google Scholar]
- Raiteri M., Federico R., Coletti A., Levi G. Release and exchange studies relating to the synaptosomal uptake of GABA. J Neurochem. 1975 Jun;24(6):1243–1250. doi: 10.1111/j.1471-4159.1975.tb03905.x. [DOI] [PubMed] [Google Scholar]
- Ryan L. D., Roskoski R., Jr Net uptake of gamma-aminobutyric acid by a high affinity synaptosomal transport system. J Pharmacol Exp Ther. 1977 Feb;200(2):285–291. [PubMed] [Google Scholar]
- SALGANICOFF L., DEROBERTIS E. SUBCELLULAR DISTRIBUTION OF THE ENZYMES OF THE GLUTAMIC ACID, GLUTAMINE AND GAMMA-AMINOBUTYRIC ACID CYCLES IN RAT BRAIN. J Neurochem. 1965 Apr;12:287–309. doi: 10.1111/j.1471-4159.1965.tb06766.x. [DOI] [PubMed] [Google Scholar]
- Simon J. R., Martin D. L., Kroll M. Sodium-dependent efflux and exchange of GABA in synaptosomes. J Neurochem. 1974 Nov;23(5):981–991. doi: 10.1111/j.1471-4159.1974.tb10750.x. [DOI] [PubMed] [Google Scholar]
- Snyder S. H., Young A. B., Bennett J. P., Mulder A. H. Synaptic biochemistry of amino acids. Fed Proc. 1973 Oct;32(10):2039–2047. [PubMed] [Google Scholar]
- Suszkiw J. B., Zimmermann H., Whittaker V. P. Vesicular storage and release of acetylcholine in Torpedo electroplaque synapses. J Neurochem. 1978 Jun;30(6):1269–1280. doi: 10.1111/j.1471-4159.1978.tb10455.x. [DOI] [PubMed] [Google Scholar]
