Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1981 Feb;78(2):1264–1268. doi: 10.1073/pnas.78.2.1264

Target neuron-specific process formation by embryonic mesencephalic dopamine neurons in vitro.

L M Hemmendinger, B B Garber, P C Hoffmann, A Heller
PMCID: PMC319989  PMID: 7015330

Abstract

Mesencephalic dopamine neurons from the embryonic mouse brain were dissociated, aggregated in vitro in the presence of dissociated cells from appropriate or inappropriate target neuron areas, and visualized by the Falck-Hillarp histofluorescence technique after exposure to 1 microM exogenous dopamine. When aggregated with the surrounding rostral mesencephalic tegmentum cells only or with the addition of rostral tectum cells, the dopamine neurons formed a dense dendritic arborization, but no axons were observed. In the presence of dopamine-neuron target cells from the corpus striatum, a dense axonal plexus characteristic of that formed in this area in vivo was observed. In contrast, in aggregates formed with target cells from the frontal cortex, branching fluorescent axons bearing irregularly spaced and shaped varicosities were found coursing through the neuropil, as is characteristic of the dopaminergic innervation to the frontal cortex in vivo. Only proximal dendrites were observed in the presence of these axonal target cells. Dopamine neurons cultured with inappropriate target cells from the occipital cortex did not form either extensive axonal or dendritic processes. Thus, the presence, type, and distribution of dopamine neuronal processes are dependent on the presence of appropriate target cells. The formation of unique patterns of neuronal processes by dissociated neurons in vitro suggests that the information necessary for this differentiation is intrinsic to the dopamine neurons and their target cells. This system provides a useful model with which to study basic mechanisms underlying neuronal recognition.

Full text

PDF
1264

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berger B., Glowinski J. Dopamine uptake in serotoninergic terminals in vitro: a valuable tool for the histochemical differentiation of catecholaminergic and serotoninergic terminals in rat cerebral structures. Brain Res. 1978 May 19;147(1):29–45. doi: 10.1016/0006-8993(78)90770-9. [DOI] [PubMed] [Google Scholar]
  2. Berger B., Tassin J. P., Blanc G., Moyne M. A., Thierry A. M. Histochemical confirmation for dopaminergic innervation of the rat cerebral cortex after destruction of the noradrenergic ascending pathways. Brain Res. 1974 Dec 6;81(2):332–337. doi: 10.1016/0006-8993(74)90948-2. [DOI] [PubMed] [Google Scholar]
  3. Björklund A., Lindvall O. Dopamine in dendrites of substantia nigra neurons: suggestions for a role in dendritic terminals. Brain Res. 1975 Jan 17;83(3):531–537. doi: 10.1016/0006-8993(75)90849-5. [DOI] [PubMed] [Google Scholar]
  4. Coyle J. T., Henry D. Catecholamines in fetal and newborn rat brain. J Neurochem. 1973 Jul;21(1):61–67. doi: 10.1111/j.1471-4159.1973.tb04225.x. [DOI] [PubMed] [Google Scholar]
  5. Garber B. B., Huttenlocher P. R., Larramendi L. H. Self-assembly of cortical plate cells in vitro within embryonic mouse cerebral aggregates. Golgi and electron microscopic analysis. Brain Res. 1980 Nov 17;201(2):255–278. doi: 10.1016/0006-8993(80)91035-5. [DOI] [PubMed] [Google Scholar]
  6. Garber B. B., Moscona A. A. Reconstruction of brain tissue from cell suspensions. I. Aggregation patterns of cells dissociated from different regions of the developing brain. Dev Biol. 1972 Feb;27(2):217–234. doi: 10.1016/0012-1606(72)90099-1. [DOI] [PubMed] [Google Scholar]
  7. Geffen L. B., Jessell T. M., Cuello A. C., Iversen L. L. Release of dopamine from dendrites in rat substantia nigra. Nature. 1976 Mar 18;260(5548):258–260. doi: 10.1038/260258a0. [DOI] [PubMed] [Google Scholar]
  8. Golden G. S. Prenatal development of the biogenic amine systems of the mouse brain. Dev Biol. 1973 Aug;33(2):300–311. doi: 10.1016/0012-1606(73)90139-5. [DOI] [PubMed] [Google Scholar]
  9. Hattori T., McGeer P. L., McGeer E. G. Dendro axonic neurotransmission. II. Morphological sites for the synthesis, binding and release of neurotransmitters in dopaminergic dendrites in the substantia nigra and cholinergic dendrites in the neostriatum. Brain Res. 1979 Jul 6;170(1):71–83. doi: 10.1016/0006-8993(79)90941-7. [DOI] [PubMed] [Google Scholar]
  10. Hökfelt T., Ungerstedt U. Electron and fluorescence microscopical studies on the nucleus caudatus putamen of the rat after unilateral lesions of ascending nigro-neostriatal dopamine neurons. Acta Physiol Scand. 1969 Aug;76(4):415–426. doi: 10.1111/j.1748-1716.1969.tb04489.x. [DOI] [PubMed] [Google Scholar]
  11. Kebabian J. W., Saavedra J. M. Dopamine-sensitive adenylate cyclase occurs in a region of substantia nigra containing dopaminergic dendrites. Science. 1976 Aug 20;193(4254):683–685. doi: 10.1126/science.181842. [DOI] [PubMed] [Google Scholar]
  12. Keller R., Oke A., Mefford I., Adams R. N. Liquid chromatographic analysis of catecholamines routine assay for regional brain mapping. Life Sci. 1976 Oct 1;19(7):995–1003. doi: 10.1016/0024-3205(76)90290-3. [DOI] [PubMed] [Google Scholar]
  13. Korf J., Zieleman M., Westerink B. H. Dopamine release in substantia nigra? Nature. 1976 Mar 18;260(5548):257–258. doi: 10.1038/260257a0. [DOI] [PubMed] [Google Scholar]
  14. Levitt P., Moore R. Y., Garber B. B. Selective cell association of catecholamine neurons in brain aggregates in vitro. Brain Res. 1976 Jul 30;111(2):311–320. doi: 10.1016/0006-8993(76)90776-9. [DOI] [PubMed] [Google Scholar]
  15. Lindvall O., Björklund A., Moore R. Y., Stenevi U. Mesencephalic dopamine neurons projecting to neocortex. Brain Res. 1974 Dec 6;81(2):325–331. doi: 10.1016/0006-8993(74)90947-0. [DOI] [PubMed] [Google Scholar]
  16. Lindvall O., Björklund A. The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry. 1974 Apr 22;39(2):97–127. doi: 10.1007/BF00492041. [DOI] [PubMed] [Google Scholar]
  17. Lorén I., Björklund A., Falck B., Lindvall O. [An improved histofluorescence procedure for freeze-dried paraffin-embedded tissue based on combined formaldehyde-glyoxylic acid perfusion with high magnesium content and acid pH]. Histochemistry. 1976 Oct 29;49(3):177–192. doi: 10.1007/BF00492374. [DOI] [PubMed] [Google Scholar]
  18. Moore R. Y., Bhatnagar R. K., Heller A. Anatomical and chemical studies of a nigro-neostriatal projection in the cat. Brain Res. 1971 Jul 9;30(1):119–135. doi: 10.1016/0006-8993(71)90009-6. [DOI] [PubMed] [Google Scholar]
  19. Moore R. Y., Bloom F. E. Central catecholamine neuron systems: anatomy and physiology of the dopamine systems. Annu Rev Neurosci. 1978;1:129–169. doi: 10.1146/annurev.ne.01.030178.001021. [DOI] [PubMed] [Google Scholar]
  20. Olson L., Seiger A., Hoffer B., Taylor D. Isolated catecholaminergic projections from substantia nigra and locus coeruleus to caudate, hippocampus and cerebral cortex formed by intraocular sequential double brain grafts. Exp Brain Res. 1979 Mar 9;35(1):47–67. doi: 10.1007/BF00236784. [DOI] [PubMed] [Google Scholar]
  21. Phillipson O. T., Horn A. S. Substantia nigra of the rat contains a dopamine sensitive adenylate cyclase. Nature. 1976 Jun 3;261(5559):418–420. doi: 10.1038/261418a0. [DOI] [PubMed] [Google Scholar]
  22. Prochiantz A., di Porzio U., Kato A., Berger B., Glowinski J. In vitro maturation of mesencephalic dopaminergic neurons from mouse embryos is enhanced in presence of their striatal target cells. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5387–5391. doi: 10.1073/pnas.76.10.5387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Torre J. C., Surgeon J. W. A methodological approach to rapid and sensitive monoamine histofluorescence using a modified glyoxylic acid technique: the SPG method. Histochemistry. 1976 Oct 22;49(2):81–93. doi: 10.1007/BF00495672. [DOI] [PubMed] [Google Scholar]
  24. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. doi: 10.1111/j.1365-201x.1971.tb10998.x. [DOI] [PubMed] [Google Scholar]
  25. van der Kooy D., Kuypers H. G. Fluorescent retrograde double labeling: axonal branching in the ascending raphe and nigral projections. Science. 1979 May 25;204(4395):873–875. doi: 10.1126/science.441742. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES