Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2391. doi: 10.1107/S1600536811032788

1,7,8,9,10,10-Hexachloro-4-(thio­phen-2-ylmeth­yl)-4-aza­tricyclo­[5.2.1.02,6]dec-8-ene-3,5-dione

R Manohar a, M Harikrishna b, C R Ramanathan b, M SureshKumar c, K Gunasekaran a,*
PMCID: PMC3200576  PMID: 22058988

Abstract

In the title compound, C14H7Cl6NO2S, the six-membered ring of the aza­tricyclo system has a boat conformation whereas the five-membered rings have an envelope conformation. The thio­phene ring and the ring of the succinimide moiety enclose a dihedral angle of 67.2 (1)°. The crystal packing is stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the biological activity of cyclic imides, see: Duarte et al. (2006); Nakamura et al. (2006); Stefańska et al. (2010).graphic file with name e-67-o2391-scheme1.jpg

Experimental

Crystal data

  • C14H7Cl6NO2S

  • M r = 465.97

  • Tetragonal, Inline graphic

  • a = 23.8136 (10) Å

  • c = 12.6240 (9) Å

  • V = 7158.9 (7) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.20 mm Is this OK?

Data collection

  • Xcalibur, Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.978, T max = 0.984

  • 8488 measured reflections

  • 4156 independent reflections

  • 2283 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.075

  • S = 0.82

  • 4156 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.31 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032788/bt5586sup1.cif

e-67-o2391-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032788/bt5586Isup2.hkl

e-67-o2391-Isup2.hkl (199.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032788/bt5586Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O2i 0.98 2.54 3.064 (3) 113
C6—H6⋯O2i 0.98 2.51 3.042 (3) 114

Symmetry code: (i) Inline graphic.

Acknowledgments

CRR is grateful to the DST–FIST single-crystal X-ray facility of the Department of Chemistry, Pondicherry University, Pondicherry.

supplementary crystallographic information

Comment

Azatricyclo dec-8-ene 3,5 dione derivatives have anti bacterial and anti fungal activities with other important biological activities (Stefańska et al., 2010).

In these structure, the six-membered ring of the norbornene moiety adopts a boat conformation whereas the two five-membered rings adopt envelope conformation.The fusion at atoms C6 and C2 is in cis conformation. The planarity around N4 and C3—N4 [1.38 (4) Å] and N4—C5 [1.38 (4) Å] reveals the partial double bond charater to facilitate the electron delocalization from one keto oxygen to other through N4. The crystal structure is stabilized by weak inter-molecular C-H···O interactions.

Experimental

1-(thiophen-2-yl)methanamine (1 equiv) and 1,4,5,6,7,7-hexachloro-5-norbornene-2,3-dicarboxylic anhydride (1 equiv) were stirred at room temperature in dry ethyl acetate for 30 min. Ethyl acetate was removed under reduced pressure; the resulting residue was dissolved in toluene. To this reaction mixture was added acetyl chloride (5 equiv) and refluxed for 1 h. The reaction mixture was brought to room temperature and washed with aqueous Na2CO3 and dried over anhydrous Na2SO4. Filtered and concentrated under reduced pressure followed by silica gel column purification afforded the imide, 1,7,8,9,10,10-Hexachloro-4-(thiophen-2-yl-methyl)-4-azatricyclo[5.2.1.02,6]dec-8-ene-3,5-dione, in 92% yield as colorless solid.

Refinement

The hydrogen atoms were positioned geometrically and refined using a riding model.

Figures

Fig. 1.

Fig. 1.

The ORTEP diagram of the compound with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

C14H7Cl6NO2S F(000) = 3712
Mr = 465.97 Dx = 1.729 Mg m3
Tetragonal, I41/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 4ad µ = 1.08 mm1
a = 23.8136 (10) Å T = 293 K
c = 12.6240 (9) Å Tetragonal, colourless
V = 7158.9 (7) Å3 0.20 × 0.20 × 0.20 mm
Z = 16

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 4156 independent reflections
Radiation source: fine-focus sealed tube 2283 reflections with I > 2σ(I)
graphite Rint = 0.032
Detector resolution: 15.9821 pixels mm-1 θmax = 29.2°, θmin = 3.0°
ω scans h = −29→16
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −28→32
Tmin = 0.978, Tmax = 0.984 l = −15→17
8488 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H-atom parameters constrained
S = 0.82 w = 1/[σ2(Fo2) + (0.0329P)2] where P = (Fo2 + 2Fc2)/3
4156 reflections (Δ/σ)max = 0.001
217 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.31 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.60327 (10) 1.16190 (10) 0.08398 (18) 0.0301 (6)
C2 0.66296 (9) 1.13668 (9) 0.09872 (19) 0.0295 (6)
H2 0.6864 1.1422 0.0358 0.035*
C3 0.69158 (10) 1.15740 (10) 0.1978 (2) 0.0326 (6)
C5 0.67499 (10) 1.06286 (10) 0.2282 (2) 0.0344 (6)
C6 0.65133 (9) 1.07395 (9) 0.11968 (18) 0.0288 (6)
H6 0.6690 1.0500 0.0660 0.035*
C7 0.58607 (9) 1.07054 (9) 0.11446 (18) 0.0276 (5)
C8 0.56310 (9) 1.10361 (10) 0.20743 (17) 0.0291 (6)
C9 0.57323 (9) 1.15729 (10) 0.18980 (18) 0.0285 (6)
C10 0.57402 (9) 1.11314 (11) 0.02405 (18) 0.0342 (6)
C11 0.72133 (10) 1.11804 (11) 0.3724 (2) 0.0432 (7)
H11A 0.7054 1.0897 0.4187 0.052*
H11B 0.7116 1.1546 0.4009 0.052*
C12 0.78385 (11) 1.11200 (10) 0.37121 (19) 0.0391 (7)
C13 0.82275 (11) 1.15206 (11) 0.3454 (2) 0.0485 (8)
H13 0.8140 1.1888 0.3269 0.058*
C14 0.87777 (12) 1.13051 (13) 0.3504 (2) 0.0617 (9)
H14 0.9094 1.1520 0.3355 0.074*
C15 0.88049 (12) 1.07617 (13) 0.3788 (2) 0.0573 (8)
H15 0.9137 1.0559 0.3857 0.069*
N4 0.69675 (8) 1.11223 (8) 0.26664 (16) 0.0321 (5)
O1 0.70632 (7) 1.20435 (7) 0.21805 (15) 0.0486 (5)
O2 0.67518 (8) 1.01900 (7) 0.27599 (16) 0.0550 (5)
S 0.81534 (3) 1.04915 (3) 0.40044 (6) 0.0562 (2)
Cl1 0.60119 (3) 1.22738 (3) 0.02283 (6) 0.0557 (2)
Cl2 0.55865 (3) 1.00296 (3) 0.09833 (6) 0.0508 (2)
Cl3 0.53529 (3) 1.07338 (3) 0.31710 (6) 0.0528 (2)
Cl4 0.56334 (3) 1.21203 (3) 0.27281 (6) 0.0553 (2)
Cl5 0.50195 (3) 1.12482 (3) 0.00103 (6) 0.0524 (2)
Cl6 0.60575 (3) 1.09588 (3) −0.09771 (5) 0.0593 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0295 (13) 0.0306 (13) 0.0303 (14) 0.0027 (11) 0.0006 (11) 0.0069 (11)
C2 0.0227 (12) 0.0304 (13) 0.0353 (14) −0.0024 (11) 0.0064 (11) 0.0025 (11)
C3 0.0210 (12) 0.0312 (14) 0.0456 (17) −0.0027 (12) 0.0021 (12) −0.0004 (13)
C5 0.0246 (13) 0.0282 (14) 0.0502 (17) 0.0013 (11) −0.0019 (12) 0.0016 (13)
C6 0.0233 (12) 0.0267 (12) 0.0363 (15) 0.0006 (11) 0.0046 (11) −0.0074 (11)
C7 0.0259 (12) 0.0271 (13) 0.0300 (14) −0.0056 (11) −0.0008 (11) −0.0045 (11)
C8 0.0221 (12) 0.0384 (14) 0.0269 (14) −0.0004 (12) 0.0030 (10) 0.0015 (12)
C9 0.0239 (12) 0.0318 (14) 0.0298 (14) 0.0080 (12) 0.0016 (11) −0.0028 (11)
C10 0.0250 (13) 0.0519 (16) 0.0258 (13) 0.0007 (13) −0.0012 (11) −0.0058 (12)
C11 0.0458 (16) 0.0434 (16) 0.0404 (17) 0.0009 (14) −0.0096 (14) −0.0005 (13)
C12 0.0431 (16) 0.0383 (15) 0.0358 (16) 0.0025 (14) −0.0143 (13) 0.0004 (13)
C13 0.0452 (17) 0.0378 (16) 0.062 (2) −0.0073 (15) −0.0266 (15) 0.0034 (14)
C14 0.0424 (18) 0.065 (2) 0.078 (2) −0.0156 (18) −0.0232 (16) 0.0116 (19)
C15 0.0419 (17) 0.067 (2) 0.064 (2) 0.0061 (17) −0.0172 (15) 0.0063 (17)
N4 0.0287 (11) 0.0289 (11) 0.0388 (13) −0.0024 (10) −0.0077 (10) 0.0019 (10)
O1 0.0490 (11) 0.0291 (10) 0.0678 (14) −0.0106 (9) −0.0153 (10) −0.0003 (9)
O2 0.0545 (12) 0.0307 (10) 0.0798 (16) −0.0019 (10) −0.0175 (11) 0.0179 (10)
S 0.0603 (5) 0.0458 (4) 0.0625 (5) 0.0053 (4) −0.0086 (4) 0.0148 (4)
Cl1 0.0628 (5) 0.0437 (4) 0.0607 (5) 0.0027 (4) −0.0044 (4) 0.0242 (4)
Cl2 0.0489 (4) 0.0382 (4) 0.0653 (5) −0.0164 (3) −0.0050 (4) −0.0117 (3)
Cl3 0.0537 (4) 0.0620 (5) 0.0427 (4) −0.0081 (4) 0.0166 (4) 0.0107 (4)
Cl4 0.0606 (5) 0.0437 (4) 0.0617 (5) 0.0095 (4) 0.0148 (4) −0.0194 (4)
Cl5 0.0325 (3) 0.0753 (5) 0.0494 (4) −0.0002 (4) −0.0142 (3) 0.0020 (4)
Cl6 0.0611 (5) 0.0861 (6) 0.0308 (4) −0.0023 (5) 0.0084 (4) −0.0126 (4)

Geometric parameters (Å, °)

C1—C9 1.519 (3) C8—C9 1.320 (3)
C1—C10 1.551 (3) C8—Cl3 1.695 (2)
C1—C2 1.554 (3) C9—Cl4 1.689 (2)
C1—Cl1 1.741 (2) C10—Cl6 1.761 (2)
C2—C3 1.508 (3) C10—Cl5 1.763 (2)
C2—C6 1.542 (3) C11—N4 1.464 (3)
C2—H2 0.9800 C11—C12 1.496 (3)
C3—O1 1.199 (3) C11—H11A 0.9700
C3—N4 1.388 (3) C11—H11B 0.9700
C5—O2 1.206 (3) C12—C13 1.369 (3)
C5—N4 1.374 (3) C12—S 1.714 (3)
C5—C6 1.504 (3) C13—C14 1.409 (4)
C6—C7 1.558 (3) C13—H13 0.9300
C6—H6 0.9800 C14—C15 1.344 (4)
C7—C8 1.516 (3) C14—H14 0.9300
C7—C10 1.554 (3) C15—S 1.701 (3)
C7—Cl2 1.749 (2) C15—H15 0.9300
C9—C1—C10 99.40 (18) C7—C8—Cl3 123.56 (17)
C9—C1—C2 107.31 (18) C8—C9—C1 107.72 (19)
C10—C1—C2 100.37 (18) C8—C9—Cl4 128.13 (19)
C9—C1—Cl1 116.18 (16) C1—C9—Cl4 123.74 (18)
C10—C1—Cl1 116.20 (16) C1—C10—C7 92.72 (17)
C2—C1—Cl1 115.16 (16) C1—C10—Cl6 114.06 (17)
C3—C2—C6 104.81 (19) C7—C10—Cl6 114.17 (17)
C3—C2—C1 112.73 (19) C1—C10—Cl5 113.56 (17)
C6—C2—C1 103.33 (17) C7—C10—Cl5 113.82 (16)
C3—C2—H2 111.8 Cl6—C10—Cl5 108.10 (12)
C6—C2—H2 111.8 N4—C11—C12 112.3 (2)
C1—C2—H2 111.8 N4—C11—H11A 109.1
O1—C3—N4 124.3 (2) C12—C11—H11A 109.1
O1—C3—C2 127.9 (2) N4—C11—H11B 109.1
N4—C3—C2 107.8 (2) C12—C11—H11B 109.1
O2—C5—N4 124.2 (2) H11A—C11—H11B 107.9
O2—C5—C6 127.5 (2) C13—C12—C11 127.5 (2)
N4—C5—C6 108.2 (2) C13—C12—S 111.32 (19)
C5—C6—C2 105.01 (19) C11—C12—S 121.1 (2)
C5—C6—C7 113.76 (19) C12—C13—C14 111.4 (2)
C2—C6—C7 102.84 (18) C12—C13—H13 124.3
C5—C6—H6 111.6 C14—C13—H13 124.3
C2—C6—H6 111.6 C15—C14—C13 114.0 (3)
C7—C6—H6 111.6 C15—C14—H14 123.0
C8—C7—C10 99.38 (18) C13—C14—H14 123.0
C8—C7—C6 107.48 (18) C14—C15—S 111.3 (2)
C10—C7—C6 100.44 (17) C14—C15—H15 124.4
C8—C7—Cl2 115.70 (16) S—C15—H15 124.4
C10—C7—Cl2 116.52 (16) C5—N4—C3 114.1 (2)
C6—C7—Cl2 115.18 (16) C5—N4—C11 123.7 (2)
C9—C8—C7 107.86 (19) C3—N4—C11 122.2 (2)
C9—C8—Cl3 128.35 (19) C15—S—C12 91.96 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O2i 0.98 2.54 3.064 (3) 113.
C6—H6···O2i 0.98 2.51 3.042 (3) 114.

Symmetry codes: (i) y−1/4, −x+7/4, z−1/4.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5586).

References

  1. Duarte, F. S., Andrade, E. S., Vieira, R. A., Uieara, M., de Nunes, R. J. & Lima, T. C. M. (2006). Bioorg. Med. Chem. 14, 5397–5401. [DOI] [PubMed]
  2. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  3. Nakamura, T., Noguchi, T., Kobayashi, H., Miyachi, H. & Hashimoto, Y. (2006). Chem. Pharm. Bull. 54, 1709–1714. [DOI] [PubMed]
  4. Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Stefańska, J., Bielenica, A., Struga, M., Tyski, S., Kossakowski, J., Colla, P. L., Tamburini, E. & Loddo, R. (2010). Ann. Microbiol. 60, 151–155.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811032788/bt5586sup1.cif

e-67-o2391-sup1.cif (17.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032788/bt5586Isup2.hkl

e-67-o2391-Isup2.hkl (199.8KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032788/bt5586Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES