Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 31;67(Pt 9):o2520–o2521. doi: 10.1107/S1600536811033794

3,5-Dimethyl-4-nitroso-1H-pyrazole

Inna Safyanova a,*, Nikolay M Dudarenko a, Vadim A Pavlenko a, Turganbay S Iskenderov a, Matti Haukka b
PMCID: PMC3200577  PMID: 22059058

Abstract

In the unit cell of the title compound, C5H7N3O, there are two conformers (A and B) which differ in the position of the oxime group with respect to the protonated pyrazole nitro­gen (trans in the A conformer and cis in the B conformer) and in the geometric parameters. The oxime group exists in the nitroso form in both conformers. In the crystal, mol­ecules are linked by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds into zigzag-like chains along the b axis.

Related literature

For the use of pyrazole-based ligands, see: Mullins & Pecoraro (2008); Mukhopadhyay et al. (2004). For the magnetic properties of pyrazolate complexes, see: Aromi & Brechin (2006); Gatteschi et al. (2006). For the use of oxime substituents in the synthesis of polynuclear ligands, see: Petrusenko et al. (1997); Kanderal et al. (2005); Sachse et al. (2008); Moroz et al. (2010). For the use of 4-nitro­pyrazoles as ligands, see: Halcrow (2005). For related structures, see: Fletcher et al. (1997); Kovbasyuk et al. (2004); Mokhir et al. (2002); Sliva et al. (1997); Wörl, Fritsky et al. (2005); Wörl, Pritzkow et al. (2005). For the synthesis of the title compound, see: Cameron et al. (1996).graphic file with name e-67-o2520-scheme1.jpg

Experimental

Crystal data

  • C5H7N3O

  • M r = 125.14

  • Monoclinic, Inline graphic

  • a = 4.0268 (2) Å

  • b = 15.3793 (7) Å

  • c = 19.6627 (9) Å

  • β = 94.613 (3)°

  • V = 1213.75 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.46 × 0.33 × 0.13 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.955, T max = 0.987

  • 9003 measured reflections

  • 2747 independent reflections

  • 1866 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.109

  • S = 1.03

  • 2747 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033794/jh2317sup1.cif

e-67-o2520-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033794/jh2317Isup2.hkl

e-67-o2520-Isup2.hkl (134.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033794/jh2317Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1B—H1B⋯O1Ai 0.954 (18) 1.802 (18) 2.7526 (16) 174.0 (15)
N1A—H1A⋯N2Bii 0.915 (19) 1.95 (2) 2.8544 (18) 171.5 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the State Fund for Fundamental Research of Ukraine (grant No. F40.3/041) and the Swedish Institute (Visby Program) is gratefully acknowledged.

supplementary crystallographic information

Comment

Pyrazole-based ligands are widely used in bioinorganic chemistry, molecular magnetism and supramolecular chemistry, as they are able to form different architectures, ranging from polynuclear clusters to metallocycles (Mullins, et al., 2008; Mukhopadhyay, et al., 2004). In addition to the ability to bridge two or more metal ions, pyrazole ligands also provide an effective magnetic exchange pathway between them (Aromi et al. 2006; Gatteschi, et al., 2006). The incorporation of other coordinating groups to the pyrazole ring can increase the variety of polynuclear compounds that can be formed. For example, introduction of the potentially bridging oxime group in the molecules of the ligands already having bridging moieties (such as pyrazolates) can lead to increase of nuclearity and complexity of the metal complexes on their basis (Petrusenko et al., 1997; Kanderal et al., 2005; Sachse et al., 2008; Moroz et al., 2010). In this work, we report the crystal structure of the title compound which contains the oxime group in the 4-position of the pyrazole ring. Unlike 4-nitropyrazoles which have been widely used for preparation of oligonuclear metal complexes (Halcrow et al., 2005), 4-nitrosopyrazoles have never been studied as ligands, and no metal complexes based on this type of ligands have been reported up to date. Crystal and molecular structures of only two 4-nitrosopyrazoles have been reported before (Cameron et al., 1996; Fletcher et al., 1997).

In the unit cell there are two types of conformers (A and B) of the title compound which differs significantly by the geometrical parameters and by the position of the oxime group with respect to the protonated pyrazole nitrogen (Fig. 1). In the conformer A, the oxime group is trans- with respect to the pyrazole hydrogen, while in the conformer B the oxime-group is cis-situated. In the conformers A and B the bond lengths markedly differs, first of all it is noticeable upon comparing the interatomic distances within the oxime groups. In the conformer B, the difference in bond lengths between C—N (1.3902 (19) Å) and N=O (1.2412 (16) Å) bonds of the oxime groups is quite large (ca 0.15 Å) while in the conformer A (C—N 1.3553 (19) Å and N=O 1.2701 (16) Å) it is much less pronounced (less than 0.08 Å). This clearly indicates that the CNO moiety in both conformers exists in the nitroso-form (Sliva et al. (1997); Mokhir et al., 2002), however, in the conformer A there is a noticeable contribution of the isonitroso-form. Such a difference can be a consequence of the involvement of the oxime oxygen O1A in formation of the intermolecular H-bond, while O1B does not participate in any H-bond (Table 1).

The differences in geometrical and electronic structure of the oxime groups significantly influence on the C—C, C—N, N—N bond lengths within the pyrazole rings which are deviated from normal values (Kovbasyuk et al., 2004; Wörl, Fritsky et al., 2005; Wörl, Pritzkow et al., 2005). Thus, there are signs of conjugation of the C(3B)—C(4B) bond with the O(1B)—N(3B) bond which results in noticeable shortening of the former (1.405 (2) Å) as compare to that observed in the conformer A, C(3)—C(4) = 1.442 (2) Å.

In the crystal, the molecules are linked by intermolecular N—H···O and N—H···N hydrogen bonds building zigzag chains along the b axis (Fig.2, Table 1). The translational along a axis chains form walls which are united into the crystal by van der Waals interactions.

Experimental

3,5-dimethyl-4-nitrozo-1H-pyrazole was synthesized by using a literature procedure (Cameron et al., 1996) from acetylacetone, sodium nitrite and hydrazine hydrate in aqueous hydrochloric acid. The crude product was collected by filtration and purified by recrystallization from benzene. Colorless crystals suitable for the X-ray diffraction were obtained after several hours (yield 78%).

Refinement

The aromatic NH H atoms were located from the difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.98 Å, and Uiso = 1.5 Ueq (parent atom).

Figures

Fig. 1.

Fig. 1.

The two independent molecules of (I) in the unit cell, showing the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound showing the intermolecular hydrogen bonds by dashed lines.

Crystal data

C5H7N3O F(000) = 528
Mr = 125.14 Dx = 1.370 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4238 reflections
a = 4.0268 (2) Å θ = 1.0–27.5°
b = 15.3793 (7) Å µ = 0.10 mm1
c = 19.6627 (9) Å T = 120 K
β = 94.613 (3)° Plate, blue
V = 1213.75 (10) Å3 0.46 × 0.33 × 0.13 mm
Z = 8

Data collection

Nonius KappaCCD diffractometer 2747 independent reflections
Radiation source: fine-focus sealed tube 1866 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.040
Detector resolution: 9 pixels mm-1 θmax = 27.4°, θmin = 2.5°
φ scans and ω scans with κ offset h = −4→5
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) k = −18→19
Tmin = 0.955, Tmax = 0.987 l = −25→25
9003 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.0988P] where P = (Fo2 + 2Fc2)/3
2747 reflections (Δ/σ)max < 0.001
175 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A −0.1796 (3) 0.16615 (7) 0.22546 (5) 0.0279 (3)
N1A 0.3665 (3) −0.05073 (9) 0.32527 (7) 0.0241 (3)
N2A 0.4403 (3) 0.02548 (8) 0.36162 (6) 0.0243 (3)
N3A −0.1316 (3) 0.08489 (8) 0.22016 (7) 0.0240 (3)
C1A 0.2710 (3) 0.08712 (10) 0.32773 (8) 0.0210 (4)
C2A 0.2872 (4) 0.17879 (10) 0.35059 (8) 0.0258 (4)
H2A 0.4408 0.1837 0.3917 0.039*
H2B 0.0648 0.1981 0.3609 0.039*
H2C 0.3667 0.2152 0.3144 0.039*
C3A 0.0867 (4) 0.05016 (9) 0.26876 (8) 0.0202 (4)
C4A 0.1598 (4) −0.03950 (10) 0.27044 (8) 0.0225 (4)
C5A 0.0466 (4) −0.11093 (10) 0.22306 (9) 0.0308 (4)
H5A 0.1902 −0.1133 0.1852 0.046*
H5B −0.1839 −0.1001 0.2052 0.046*
H5C 0.0589 −0.1664 0.2476 0.046*
O1B −0.2132 (3) 0.13230 (7) −0.04852 (6) 0.0356 (3)
N1B 0.3699 (3) 0.21423 (8) 0.11942 (7) 0.0216 (3)
N2B 0.3158 (3) 0.30207 (8) 0.10938 (7) 0.0226 (3)
N3B −0.1646 (3) 0.20960 (9) −0.03253 (7) 0.0275 (3)
C1B 0.1150 (4) 0.30759 (10) 0.05258 (8) 0.0214 (4)
C2B 0.0044 (4) 0.39331 (10) 0.02337 (8) 0.0267 (4)
H2B1 0.0884 0.4400 0.0540 0.040*
H2B2 −0.2395 0.3953 0.0182 0.040*
H2B3 0.0918 0.4009 −0.0213 0.040*
C3B 0.0397 (4) 0.22318 (10) 0.02693 (7) 0.0201 (3)
C4B 0.2123 (4) 0.16456 (10) 0.07173 (8) 0.0208 (4)
C5B 0.2411 (4) 0.06867 (10) 0.07173 (8) 0.0264 (4)
H5B1 0.3957 0.0502 0.1100 0.040*
H5B2 0.3250 0.0494 0.0288 0.040*
H5B3 0.0216 0.0428 0.0763 0.040*
H1A 0.453 (4) −0.1013 (13) 0.3437 (9) 0.040 (5)*
H1B 0.515 (4) 0.1949 (11) 0.1572 (9) 0.035 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0312 (6) 0.0231 (6) 0.0288 (7) 0.0049 (5) −0.0017 (5) 0.0031 (5)
N1A 0.0283 (7) 0.0183 (7) 0.0252 (8) 0.0026 (6) −0.0006 (6) 0.0023 (6)
N2A 0.0268 (7) 0.0221 (8) 0.0236 (7) 0.0000 (6) 0.0000 (6) 0.0000 (6)
N3A 0.0240 (7) 0.0244 (8) 0.0236 (7) 0.0010 (6) 0.0024 (6) 0.0034 (6)
C1A 0.0187 (8) 0.0230 (9) 0.0216 (8) 0.0002 (6) 0.0028 (6) 0.0019 (6)
C2A 0.0259 (8) 0.0246 (9) 0.0261 (9) 0.0004 (7) −0.0024 (7) −0.0031 (7)
C3A 0.0198 (8) 0.0204 (8) 0.0205 (8) −0.0002 (6) 0.0023 (6) 0.0010 (6)
C4A 0.0224 (8) 0.0218 (9) 0.0235 (9) −0.0005 (7) 0.0039 (7) 0.0021 (6)
C5A 0.0352 (9) 0.0228 (9) 0.0337 (10) −0.0011 (7) −0.0005 (8) −0.0046 (7)
O1B 0.0459 (7) 0.0269 (7) 0.0328 (7) −0.0057 (6) −0.0044 (6) −0.0041 (5)
N1B 0.0249 (7) 0.0172 (7) 0.0222 (7) 0.0014 (6) −0.0014 (6) 0.0019 (5)
N2B 0.0270 (7) 0.0153 (7) 0.0250 (7) 0.0008 (5) −0.0008 (6) 0.0011 (5)
N3B 0.0295 (7) 0.0247 (8) 0.0280 (8) −0.0038 (6) 0.0007 (6) −0.0014 (6)
C1B 0.0220 (8) 0.0203 (8) 0.0223 (8) 0.0005 (6) 0.0037 (7) 0.0001 (6)
C2B 0.0308 (9) 0.0205 (8) 0.0282 (9) 0.0013 (7) −0.0010 (7) 0.0030 (7)
C3B 0.0212 (8) 0.0194 (8) 0.0198 (8) −0.0005 (6) 0.0020 (6) 0.0002 (6)
C4B 0.0204 (8) 0.0211 (8) 0.0214 (8) −0.0018 (6) 0.0041 (7) −0.0013 (6)
C5B 0.0313 (9) 0.0184 (8) 0.0294 (9) 0.0012 (7) 0.0017 (7) −0.0003 (7)

Geometric parameters (Å, °)

O1A—N3A 1.2701 (16) O1B—N3B 1.2412 (16)
N1A—C4A 1.319 (2) N1B—C4B 1.330 (2)
N1A—N2A 1.3922 (18) N1B—N2B 1.3801 (17)
N1A—H1A 0.915 (19) N1B—H1B 0.954 (18)
N2A—C1A 1.3170 (19) N2B—C1B 1.3279 (19)
N3A—C3A 1.3553 (19) N3B—C3B 1.3902 (19)
C1A—C3A 1.442 (2) C1B—C3B 1.417 (2)
C1A—C2A 1.479 (2) C1B—C2B 1.492 (2)
C2A—H2A 0.9800 C2B—H2B1 0.9800
C2A—H2B 0.9800 C2B—H2B2 0.9800
C2A—H2C 0.9800 C2B—H2B3 0.9800
C3A—C4A 1.410 (2) C3B—C4B 1.405 (2)
C4A—C5A 1.488 (2) C4B—C5B 1.479 (2)
C5A—H5A 0.9800 C5B—H5B1 0.9800
C5A—H5B 0.9800 C5B—H5B2 0.9800
C5A—H5C 0.9800 C5B—H5B3 0.9800
C4A—N1A—N2A 113.82 (13) C4B—N1B—N2B 113.61 (12)
C4A—N1A—H1A 129.1 (11) C4B—N1B—H1B 126.7 (10)
N2A—N1A—H1A 116.9 (11) N2B—N1B—H1B 119.7 (10)
C1A—N2A—N1A 105.42 (12) C1B—N2B—N1B 105.14 (12)
O1A—N3A—C3A 115.11 (12) O1B—N3B—C3B 115.32 (13)
N2A—C1A—C3A 109.56 (13) N2B—C1B—C3B 109.83 (13)
N2A—C1A—C2A 121.60 (13) N2B—C1B—C2B 121.54 (13)
C3A—C1A—C2A 128.84 (13) C3B—C1B—C2B 128.62 (14)
C1A—C2A—H2A 109.5 C1B—C2B—H2B1 109.5
C1A—C2A—H2B 109.5 C1B—C2B—H2B2 109.5
H2A—C2A—H2B 109.5 H2B1—C2B—H2B2 109.5
C1A—C2A—H2C 109.5 C1B—C2B—H2B3 109.5
H2A—C2A—H2C 109.5 H2B1—C2B—H2B3 109.5
H2B—C2A—H2C 109.5 H2B2—C2B—H2B3 109.5
N3A—C3A—C4A 121.63 (13) N3B—C3B—C4B 131.33 (14)
N3A—C3A—C1A 132.39 (14) N3B—C3B—C1B 122.16 (14)
C4A—C3A—C1A 105.89 (13) C4B—C3B—C1B 106.50 (13)
N1A—C4A—C3A 105.30 (13) N1B—C4B—C3B 104.92 (13)
N1A—C4A—C5A 123.80 (14) N1B—C4B—C5B 122.65 (14)
C3A—C4A—C5A 130.89 (14) C3B—C4B—C5B 132.42 (14)
C4A—C5A—H5A 109.5 C4B—C5B—H5B1 109.5
C4A—C5A—H5B 109.5 C4B—C5B—H5B2 109.5
H5A—C5A—H5B 109.5 H5B1—C5B—H5B2 109.5
C4A—C5A—H5C 109.5 C4B—C5B—H5B3 109.5
H5A—C5A—H5C 109.5 H5B1—C5B—H5B3 109.5
H5B—C5A—H5C 109.5 H5B2—C5B—H5B3 109.5
C4A—N1A—N2A—C1A 0.03 (17) C4B—N1B—N2B—C1B −0.10 (17)
N1A—N2A—C1A—C3A −0.15 (16) N1B—N2B—C1B—C3B 0.46 (17)
N1A—N2A—C1A—C2A −179.56 (13) N1B—N2B—C1B—C2B −178.40 (13)
O1A—N3A—C3A—C4A 178.61 (13) O1B—N3B—C3B—C4B 2.4 (2)
O1A—N3A—C3A—C1A 2.4 (2) O1B—N3B—C3B—C1B −179.01 (14)
N2A—C1A—C3A—N3A 176.84 (15) N2B—C1B—C3B—N3B −179.59 (13)
C2A—C1A—C3A—N3A −3.8 (3) C2B—C1B—C3B—N3B −0.8 (2)
N2A—C1A—C3A—C4A 0.22 (16) N2B—C1B—C3B—C4B −0.65 (17)
C2A—C1A—C3A—C4A 179.57 (15) C2B—C1B—C3B—C4B 178.11 (15)
N2A—N1A—C4A—C3A 0.11 (17) N2B—N1B—C4B—C3B −0.30 (16)
N2A—N1A—C4A—C5A 179.38 (14) N2B—N1B—C4B—C5B 178.69 (13)
N3A—C3A—C4A—N1A −177.26 (14) N3B—C3B—C4B—N1B 179.36 (15)
C1A—C3A—C4A—N1A −0.19 (16) C1B—C3B—C4B—N1B 0.56 (16)
N3A—C3A—C4A—C5A 3.5 (3) N3B—C3B—C4B—C5B 0.5 (3)
C1A—C3A—C4A—C5A −179.39 (16) C1B—C3B—C4B—C5B −178.29 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1B—H1B···O1Ai 0.954 (18) 1.802 (18) 2.7526 (16) 174.0 (15)
N1A—H1A···N2Bii 0.915 (19) 1.95 (2) 2.8544 (18) 171.5 (16)

Symmetry codes: (i) x+1, y, z; (ii) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2317).

References

  1. Aromi, G. & Brechin, E. K. (2006). Struct. Bonding (Berlin), 122, 1–67.
  2. Brandenburg, K. (2008). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Cameron, M., Gowenlock, B. G. & Boyd, A. S. F. (1996). J. Chem. Soc. Perkin Trans. 2, pp. 2271–2274.
  5. Fletcher, D. A., Gowenlock, B. G., Orrell, K. G., Šik, V., Hibbs, D. E., Hursthouse, M. B. & Abdul Malik, K. M. (1997). J. Chem. Soc. Perkin Trans. 2, pp. 721–728.
  6. Gatteschi, D., Sessoli, R. & Villain, J. (2006). Molecular Nanomagnets Oxford University Press.
  7. Halcrow, M. A. (2005). Coord. Chem. Rev. 249, 2880–2908.
  8. Kanderal, O. M., Kozłowski, H., Dobosz, A., Świątek-Kozłowska, J., Meyer, F. & Fritsky, I. O. (2005). Dalton Trans. pp. 1428–1437. [DOI] [PubMed]
  9. Kovbasyuk, L., Pritzkow, H., Krämer, R. & Fritsky, I. O. (2004). Chem. Commun. pp. 880–881. [DOI] [PubMed]
  10. Mokhir, A. A., Gumienna-Kontecka, E. S., Świątek-Kozłowska, J., Petkova, E. G., Fritsky, I. O., Jerzykiewicz, L., Kapshuk, A. A. & Sliva, T. Yu. (2002). Inorg. Chim. Acta, 329, 113–121.
  11. Moroz, Y. S., Szyrweil, L., Demeshko, S., Kozłowski, H., Meyer, F. & Fritsky, I. O. (2010). Inorg. Chem. 49, 4750–4752. [DOI] [PubMed]
  12. Mukhopadhyay, S., Mandal, S. K., Bhaduri, S. & Armstrong, W. H. (2004). Chem. Rev. 104, 3981–4026. [DOI] [PubMed]
  13. Mullins, C. S. & Pecoraro, V. L. (2008). Coord. Chem. Rev. 252, 416–443. [DOI] [PMC free article] [PubMed]
  14. Nonius (2000). COLLECT Nonius BV, Delft, The Netherlands.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Petrusenko, S. R., Kokozay, V. N. & Fritsky, I. O. (1997). Polyhedron, 16, 267–274.
  17. Sachse, A., Penkova, L., Noel, G., Dechert, S., Varzatskii, O. A., Fritsky, I. O. & Meyer, F. (2008). Synthesis, pp. 800–806.
  18. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  19. Sliva, T. Yu., Kowalik-Jankowska, T., Amirkhanov, V. M., Głowiak, T., Onindo, C. O., Fritsky, I. O. & Kozłowski, H. (1997). J. Inorg. Biochem. 65, 287–294.
  20. Wörl, S., Fritsky, I. O., Hellwinkel, D., Pritzkow, H. & Krämer, R. (2005). Eur. J. Inorg. Chem. pp. 759–765.
  21. Wörl, S., Pritzkow, H., Fritsky, I. O. & Krämer, R. (2005). Dalton Trans. pp. 27–29. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811033794/jh2317sup1.cif

e-67-o2520-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811033794/jh2317Isup2.hkl

e-67-o2520-Isup2.hkl (134.9KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811033794/jh2317Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES