Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 27;67(Pt 9):o2373–o2374. doi: 10.1107/S1600536811032673

2-(5,6-Dihydro­benzimidazo[1,2-c]quinazolin-6-yl)-5-methyl­phenol

Naser Eltaher Eltayeb a,b, Siang Guan Teoh a, Madhukar Hemamalini c, Hoong-Kun Fun c,*,
PMCID: PMC3200579  PMID: 22058979

Abstract

In the title compound, C21H17N3O, the imidazole ring is essentially planar, with a maximum deviation of 0.009 (1) Å. The mol­ecule is disordered over two sites corresponding to a rotation of approximately 180° with a refined occupancy ratio of 0.9180 (14):0.0820 (14). The central pyrim­idine ring makes dihedral angles of 5.02 (5), 3.97 (5) and 6.28 (5)°, respectively, with the planes of the imidazole and the terminal phenyl rings for the major component; the values for the minor component are 5.8 (7), 5.0 (6) and 8.5 (6)°, respectively. Part of the observed planarity is accounted for in terms of an intra­molecular N—H⋯O hydrogen bond. In the crystal, mol­ecules of the major component are connected by O—H⋯N hydrogen bonds, forming supra­molecular chains along the c axis.

Related literature

For applications of benzimidazoles, see: Sun et al. (2010); Harrell et al. (2004). For related structures, see: Eltayeb et al. (2007, 2009, 2011). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-67-o2373-scheme1.jpg

Experimental

Crystal data

  • C21H17N3O

  • M r = 327.38

  • Monoclinic, Inline graphic

  • a = 15.1292 (3) Å

  • b = 12.2648 (2) Å

  • c = 17.1909 (3) Å

  • β = 96.233 (1)°

  • V = 3171.03 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.59 × 0.21 × 0.20 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.951, T max = 0.983

  • 24277 measured reflections

  • 6164 independent reflections

  • 4808 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.126

  • S = 1.04

  • 6164 reflections

  • 296 parameters

  • 44 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032673/tk2779sup1.cif

e-67-o2373-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032673/tk2779Isup2.hkl

e-67-o2373-Isup2.hkl (295.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032673/tk2779Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1N3⋯O1 0.90 2.39 2.9655 (11) 123
O1—H1O1⋯N2i 0.919 (16) 1.830 (16) 2.7038 (10) 158.0 (15)

Symmetry code: (i) Inline graphic.

Acknowledgments

NEE and SGT thank the Malaysian Government and Universiti Sains Malaysia for the RU research grant (1001/PKIMIA/815067). NEE also thanks Universiti Sains Malaysia for a post-doctoral fellowship and the Inter­national University of Africa (Sudan) for providing study leave. HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks the Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Benzimidazoles are known to be strong chelating agents coordinating through both the C═N N atoms (Sun et al., 2010). The benzimidazole ring system is present in the clinically approved anthelmintics, anti-ulcer, anti-viral, and anti-histamine drugs (Harrell et al., 2004). As part of our on-going structural studies of benzimidazoles (Eltayeb et al., 2007, 2009, 2011), we now describe in this paper the single-crystal X-ray diffraction study of title compound (I).

The molecular structure of (I) is shown in Fig. 1. The 2-(5,6 dihydrobenzimidazo[1,2-c]quinazolin-6-yl) molecule is disordered over two sites corresponding to a rotation of approximately 180\% with a refined occupancy ratio of 0.9180 (14):0.0820 (14). The imidazole (N1/N2/C6/C7/C8) ring is essentially planar, with a maximum deviation of 0.009 (1) Å for atom C7. The central pyrimidine ring makes dihedral angles of 5.02 (5), 3.97 (5), 6.28 (5) ° for the major component, and 5.8 (7), 5.0 (6) and 8.5 (6) ° for the minor component, respectively, with the plane of the imidazole and with those through the terminal phenyl rings.

In the crystal structure (Fig. 2), the molecules of the major component are connected by O1—H1O1···N2 hydrogen bonds (Table 1) forming a supramolecular chain along the c-axis.

Experimental

To a solution of 2-(2-aminophenyl)-1H-benzimidazole (0.418 g, 2.0 mmol) in ethanol (30 mL) was added 2-hydroxy-4-methylbenzaldehyde (0.272 g, 2.0 mmol). The mixture was refluxed with stirring for two hours after which the colour of the resulting solution turned pale-yellow. Colourless crystals were formed after several days of slow evaporation of its ethanol solution held at room temperature.

Refinement

Atom H1O1 was located from a difference Fourier maps and refined freely [O—H = 0.919 (16) Å]. The N—H H atoms were located from a difference map and fixed at those positions and refined with Uiso(H) = 1.2 Ueq(N). The remaining H atoms were positioned geometrically [C—H = 0.95–1.00 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The molecule is disordered over two sites with a refined occupancy ratio of 0.9180 (14):0.0820 (14); the minor component was refined with isotropic displacement parameters.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The minor component is shown with open bonds. H atoms omitted for clarity.

Fig. 2.

Fig. 2.

A view of the supramolecular chain in (I), dashed lines represents hydrogen bonding.

Crystal data

C21H17N3O F(000) = 1376
Mr = 327.38 Dx = 1.371 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 7250 reflections
a = 15.1292 (3) Å θ = 2.4–33.4°
b = 12.2648 (2) Å µ = 0.09 mm1
c = 17.1909 (3) Å T = 100 K
β = 96.233 (1)° Block, colourless
V = 3171.03 (10) Å3 0.59 × 0.21 × 0.20 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 6164 independent reflections
Radiation source: fine-focus sealed tube 4808 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 33.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −23→21
Tmin = 0.951, Tmax = 0.983 k = −18→19
24277 measured reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0635P)2 + 1.1622P] where P = (Fo2 + 2Fc2)/3
6164 reflections (Δ/σ)max = 0.001
296 parameters Δρmax = 0.41 e Å3
44 restraints Δρmin = −0.25 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.11427 (4) 0.39987 (6) 1.02884 (4) 0.02061 (14)
C14 0.09940 (6) 0.43709 (8) 0.86934 (5) 0.01907 (17)
H14A 0.0600 0.3742 0.8790 0.023* 0.9180 (14)
H14B 0.0558 0.4551 0.9038 0.023* 0.0820 (14)
C15 0.18959 (6) 0.41867 (7) 0.91603 (5) 0.01793 (16)
C16 0.26904 (6) 0.41994 (8) 0.88195 (5) 0.02215 (18)
H16A 0.2675 0.4300 0.8270 0.027*
C17 0.35059 (6) 0.40677 (8) 0.92684 (5) 0.02231 (18)
H17A 0.4040 0.4083 0.9025 0.027*
C18 0.35418 (6) 0.39130 (7) 1.00739 (5) 0.01832 (16)
C19 0.27492 (6) 0.38872 (7) 1.04197 (5) 0.01798 (16)
H19A 0.2766 0.3778 1.0968 0.022*
C20 0.19305 (5) 0.40201 (7) 0.99689 (5) 0.01667 (15)
C21 0.44220 (6) 0.37331 (8) 1.05544 (5) 0.02230 (18)
H21A 0.4406 0.4057 1.1074 0.033*
H21B 0.4895 0.4076 1.0294 0.033*
H21C 0.4537 0.2949 1.0608 0.033*
N1 0.10675 (5) 0.44305 (7) 0.78585 (4) 0.01890 (16) 0.9180 (14)
N2 0.14473 (6) 0.52085 (8) 0.67606 (5) 0.02089 (17) 0.9180 (14)
N3 0.05600 (5) 0.53695 (7) 0.89063 (5) 0.02081 (17) 0.9180 (14)
H1N3 0.0569 0.5417 0.9427 0.031* 0.9180 (14)
C1 0.12136 (6) 0.35766 (10) 0.73616 (6) 0.01981 (19) 0.9180 (14)
C2 0.11768 (7) 0.24516 (11) 0.74523 (7) 0.0247 (2) 0.9180 (14)
H2A 0.1025 0.2128 0.7922 0.030* 0.9180 (14)
C3 0.13738 (8) 0.18239 (10) 0.68194 (8) 0.0260 (2) 0.9180 (14)
H3A 0.1354 0.1052 0.6855 0.031* 0.9180 (14)
C4 0.16018 (8) 0.23106 (12) 0.61273 (6) 0.0255 (2) 0.9180 (14)
H4A 0.1736 0.1858 0.5707 0.031* 0.9180 (14)
C5 0.16364 (7) 0.34331 (11) 0.60427 (6) 0.0238 (2) 0.9180 (14)
H5A 0.1787 0.3755 0.5572 0.029* 0.9180 (14)
C6 0.14422 (6) 0.40766 (9) 0.66750 (6) 0.02034 (19) 0.9180 (14)
C7 0.12315 (7) 0.53821 (11) 0.74761 (7) 0.01833 (19) 0.9180 (14)
C8 0.11421 (6) 0.64094 (9) 0.78768 (6) 0.01890 (18) 0.9180 (14)
C9 0.13375 (7) 0.74150 (10) 0.75533 (6) 0.0228 (2) 0.9180 (14)
H9A 0.1549 0.7441 0.7053 0.027* 0.9180 (14)
C10 0.12243 (8) 0.83764 (11) 0.79570 (8) 0.0267 (2) 0.9180 (14)
H10A 0.1356 0.9060 0.7736 0.032* 0.9180 (14)
C11 0.09131 (8) 0.83251 (12) 0.86945 (7) 0.0254 (2) 0.9180 (14)
H11A 0.0844 0.8979 0.8978 0.030* 0.9180 (14)
C12 0.07047 (7) 0.73363 (10) 0.90174 (6) 0.0229 (2) 0.9180 (14)
H12A 0.0484 0.7319 0.9514 0.027* 0.9180 (14)
C13 0.08176 (6) 0.63642 (9) 0.86160 (6) 0.01901 (18) 0.9180 (14)
N1X 0.1041 (7) 0.5258 (8) 0.8082 (6) 0.028 (2)* 0.0820 (14)
N2X 0.1354 (7) 0.6061 (8) 0.6958 (6) 0.029 (2)* 0.0820 (14)
N3X 0.0707 (8) 0.3422 (9) 0.8217 (6) 0.034 (3)* 0.0820 (14)
H3XB 0.0286 0.3007 0.8375 0.040* 0.0820 (14)
C1X 0.1029 (6) 0.6359 (7) 0.8222 (6) 0.0121 (17)* 0.0820 (14)
C2X 0.0875 (8) 0.6912 (10) 0.8879 (6) 0.019 (2)* 0.0820 (14)
H2XA 0.0751 0.6539 0.9339 0.023* 0.0820 (14)
C3X 0.0905 (11) 0.7992 (12) 0.8855 (9) 0.029 (4)* 0.0820 (14)
H3XA 0.0785 0.8413 0.9295 0.035* 0.0820 (14)
C4X 0.1115 (12) 0.8496 (12) 0.8177 (9) 0.030 (4)* 0.0820 (14)
H4XA 0.1149 0.9269 0.8181 0.035* 0.0820 (14)
C5X 0.1276 (9) 0.7977 (10) 0.7500 (7) 0.028 (3)* 0.0820 (14)
H5XA 0.1411 0.8352 0.7044 0.034* 0.0820 (14)
C6X 0.1223 (8) 0.6841 (9) 0.7548 (6) 0.021 (2)* 0.0820 (14)
C7X 0.1253 (14) 0.5126 (10) 0.7308 (9) 0.034 (5)* 0.0820 (14)
C8X 0.1320 (7) 0.3976 (8) 0.7053 (7) 0.0171 (19)* 0.0820 (14)
C9X 0.1614 (7) 0.3764 (9) 0.6341 (7) 0.017 (2)* 0.0820 (14)
H9XA 0.1765 0.4355 0.6025 0.021* 0.0820 (14)
C10X 0.1692 (11) 0.2743 (12) 0.6081 (8) 0.029 (3)* 0.0820 (14)
H10B 0.1906 0.2606 0.5591 0.034* 0.0820 (14)
C11X 0.1456 (11) 0.1902 (12) 0.6538 (9) 0.030 (4)* 0.0820 (14)
H11B 0.1510 0.1172 0.6365 0.036* 0.0820 (14)
C12X 0.1147 (9) 0.2095 (10) 0.7232 (8) 0.025 (3)* 0.0820 (14)
H12B 0.0983 0.1493 0.7534 0.031* 0.0820 (14)
C13X 0.1062 (9) 0.3127 (10) 0.7517 (7) 0.025 (2)* 0.0820 (14)
H1O1 0.1244 (10) 0.4082 (13) 1.0822 (10) 0.046 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0165 (3) 0.0344 (4) 0.0115 (3) −0.0010 (2) 0.0041 (2) −0.0009 (2)
C14 0.0158 (4) 0.0302 (4) 0.0115 (3) −0.0020 (3) 0.0024 (3) 0.0028 (3)
C15 0.0160 (4) 0.0263 (4) 0.0116 (3) −0.0006 (3) 0.0019 (3) 0.0011 (3)
C16 0.0182 (4) 0.0354 (5) 0.0132 (4) −0.0006 (3) 0.0032 (3) 0.0027 (3)
C17 0.0163 (4) 0.0340 (5) 0.0172 (4) 0.0000 (3) 0.0042 (3) 0.0021 (3)
C18 0.0172 (4) 0.0218 (4) 0.0157 (4) 0.0005 (3) 0.0007 (3) 0.0002 (3)
C19 0.0176 (4) 0.0241 (4) 0.0121 (3) 0.0005 (3) 0.0011 (3) 0.0000 (3)
C20 0.0158 (3) 0.0221 (4) 0.0124 (3) −0.0005 (3) 0.0031 (3) −0.0009 (3)
C21 0.0180 (4) 0.0285 (4) 0.0199 (4) 0.0017 (3) −0.0004 (3) 0.0023 (3)
N1 0.0170 (3) 0.0294 (4) 0.0104 (3) −0.0026 (3) 0.0021 (2) 0.0019 (3)
N2 0.0194 (4) 0.0322 (4) 0.0114 (3) 0.0007 (3) 0.0031 (3) 0.0018 (3)
N3 0.0171 (4) 0.0327 (4) 0.0135 (3) 0.0030 (3) 0.0060 (3) 0.0039 (3)
C1 0.0157 (4) 0.0308 (5) 0.0127 (4) −0.0031 (4) 0.0006 (3) −0.0001 (4)
C2 0.0242 (5) 0.0323 (6) 0.0174 (5) −0.0038 (4) 0.0020 (4) −0.0006 (4)
C3 0.0249 (5) 0.0312 (6) 0.0214 (6) −0.0048 (4) 0.0012 (4) −0.0016 (4)
C4 0.0237 (5) 0.0340 (7) 0.0182 (5) −0.0030 (5) 0.0002 (3) −0.0039 (4)
C5 0.0229 (5) 0.0349 (6) 0.0138 (4) −0.0010 (4) 0.0023 (3) −0.0020 (4)
C6 0.0167 (4) 0.0323 (5) 0.0118 (4) −0.0013 (4) 0.0007 (3) 0.0000 (4)
C7 0.0127 (4) 0.0315 (5) 0.0108 (4) −0.0006 (4) 0.0015 (3) 0.0033 (4)
C8 0.0146 (4) 0.0301 (5) 0.0122 (4) 0.0028 (3) 0.0027 (3) 0.0034 (3)
C9 0.0219 (5) 0.0298 (6) 0.0177 (4) 0.0039 (4) 0.0060 (3) 0.0051 (4)
C10 0.0266 (6) 0.0327 (6) 0.0222 (6) 0.0056 (4) 0.0093 (4) 0.0059 (5)
C11 0.0262 (5) 0.0291 (6) 0.0220 (5) 0.0065 (5) 0.0075 (4) 0.0021 (5)
C12 0.0208 (4) 0.0316 (5) 0.0170 (4) 0.0062 (4) 0.0050 (3) 0.0013 (4)
C13 0.0136 (4) 0.0312 (5) 0.0124 (4) 0.0031 (3) 0.0021 (3) 0.0030 (3)

Geometric parameters (Å, °)

O1—C20 1.3658 (10) C7—C8 1.4493 (18)
O1—H1O1 0.919 (16) C8—C9 1.3976 (15)
C14—N1 1.4534 (11) C8—C13 1.4122 (13)
C14—N3 1.4551 (13) C9—C10 1.3883 (19)
C14—N3X 1.462 (12) C9—H9A 0.9500
C14—N1X 1.520 (10) C10—C11 1.4010 (17)
C14—C15 1.5230 (12) C10—H10A 0.9500
C14—H14A 1.0000 C11—C12 1.3842 (17)
C14—H14B 0.9600 C11—H11A 0.9500
C15—C16 1.3932 (12) C12—C13 1.3973 (15)
C15—C20 1.4003 (11) C12—H12A 0.9500
C16—C17 1.3918 (13) N1X—C1X 1.372 (11)
C16—H16A 0.9500 N1X—C7X 1.411 (14)
C17—C18 1.3928 (12) N2X—C7X 1.310 (14)
C17—H17A 0.9500 N2X—C6X 1.424 (12)
C18—C19 1.3955 (12) N3X—C13X 1.416 (13)
C18—C21 1.5052 (12) N3X—H3XB 0.8800
C19—C20 1.3974 (11) C1X—C6X 1.360 (13)
C19—H19A 0.9500 C1X—C2X 1.360 (13)
C21—H21A 0.9800 C2X—C3X 1.326 (14)
C21—H21B 0.9800 C2X—H2XA 0.9500
C21—H21C 0.9800 C3X—C4X 1.386 (15)
N1—C7 1.3752 (14) C3X—H3XA 0.9500
N1—C1 1.3843 (13) C4X—C5X 1.371 (14)
N2—C7 1.3236 (14) C4X—H4XA 0.9500
N2—C6 1.3959 (14) C5X—C6X 1.399 (14)
N3—C13 1.3898 (13) C5X—H5XA 0.9500
N3—H14B 1.0293 C7X—C8X 1.484 (13)
N3—H1N3 0.8957 C8X—C9X 1.372 (13)
C1—C2 1.3904 (17) C8X—C13X 1.394 (14)
C1—C6 1.4063 (14) C9X—C10X 1.339 (14)
C2—C3 1.3912 (17) C9X—H9XA 0.9500
C2—H2A 0.9500 C10X—C11X 1.367 (15)
C3—C4 1.4071 (17) C10X—H10B 0.9500
C3—H3A 0.9500 C11X—C12X 1.349 (14)
C4—C5 1.3860 (18) C11X—H11B 0.9500
C4—H4A 0.9500 C12X—C13X 1.368 (14)
C5—C6 1.3999 (14) C12X—H12B 0.9500
C5—H5A 0.9500
C20—O1—H1O1 109.9 (10) N2—C6—C1 110.13 (9)
N1—C14—N3 106.92 (7) C5—C6—C1 119.82 (10)
N1—C14—N3X 62.4 (4) N2—C7—N1 112.53 (12)
N3—C14—N3X 134.1 (5) N2—C7—C8 128.81 (10)
N3—C14—N1X 68.1 (4) N1—C7—C8 118.66 (10)
N3X—C14—N1X 102.5 (6) C9—C8—C13 120.12 (10)
N1—C14—C15 111.57 (7) C9—C8—C7 122.91 (10)
N3—C14—C15 113.28 (7) C13—C8—C7 116.94 (9)
N3X—C14—C15 111.8 (5) C10—C9—C8 120.51 (10)
N1X—C14—C15 111.4 (4) C10—C9—H9A 119.7
N1—C14—H14A 108.3 C8—C9—H9A 119.7
N3—C14—H14A 108.3 C9—C10—C11 119.08 (12)
N3X—C14—H14A 48.1 C9—C10—H10A 120.5
N1X—C14—H14A 137.8 C11—C10—H10A 120.5
C15—C14—H14A 108.3 C12—C11—C10 121.04 (12)
N1—C14—H14B 136.9 C12—C11—H11A 119.5
N3X—C14—H14B 110.3 C10—C11—H11A 119.5
N1X—C14—H14B 110.5 C11—C12—C13 120.28 (9)
C15—C14—H14B 110.2 C11—C12—H12A 119.9
H14A—C14—H14B 67.2 C13—C12—H12A 119.9
C16—C15—C20 118.56 (8) N3—C13—C12 121.17 (9)
C16—C15—C14 122.77 (7) N3—C13—C8 119.74 (9)
C20—C15—C14 118.66 (7) C12—C13—C8 118.94 (9)
C17—C16—C15 121.26 (8) C1X—N1X—C7X 106.7 (9)
C17—C16—H16A 119.4 C1X—N1X—C14 125.5 (8)
C15—C16—H16A 119.4 C7X—N1X—C14 127.1 (8)
C16—C17—C18 120.23 (8) C7X—N2X—C6X 103.3 (9)
C16—C17—H17A 119.9 C13X—N3X—C14 124.2 (10)
C18—C17—H17A 119.9 C13X—N3X—H3XB 117.9
C17—C18—C19 118.96 (8) C14—N3X—H3XB 117.9
C17—C18—C21 120.15 (8) C6X—C1X—C2X 124.2 (9)
C19—C18—C21 120.85 (8) C6X—C1X—N1X 105.7 (9)
C18—C19—C20 120.79 (8) C2X—C1X—N1X 130.1 (10)
C18—C19—H19A 119.6 C3X—C2X—C1X 117.6 (10)
C20—C19—H19A 119.6 C3X—C2X—H2XA 121.2
O1—C20—C19 122.30 (7) C1X—C2X—H2XA 121.2
O1—C20—C15 117.50 (7) C2X—C3X—C4X 118.9 (13)
C19—C20—C15 120.19 (8) C2X—C3X—H3XA 120.5
C18—C21—H21A 109.5 C4X—C3X—H3XA 120.5
C18—C21—H21B 109.5 C5X—C4X—C3X 125.8 (14)
H21A—C21—H21B 109.5 C5X—C4X—H4XA 117.1
C18—C21—H21C 109.5 C3X—C4X—H4XA 117.1
H21A—C21—H21C 109.5 C4X—C5X—C6X 113.3 (12)
H21B—C21—H21C 109.5 C4X—C5X—H5XA 123.4
C7—N1—C1 107.34 (9) C6X—C5X—H5XA 123.4
C7—N1—C14 123.50 (9) C1X—C6X—C5X 120.2 (9)
C1—N1—C14 127.28 (9) C1X—C6X—N2X 111.9 (9)
C7—N2—C6 105.01 (9) C5X—C6X—N2X 127.9 (10)
C13—N3—C14 119.79 (8) N2X—C7X—N1X 112.5 (10)
C13—N3—H14B 160.6 N2X—C7X—C8X 132.9 (12)
C13—N3—H1N3 109.1 N1X—C7X—C8X 114.6 (11)
C14—N3—H1N3 110.4 C9X—C8X—C13X 120.4 (9)
H14B—N3—H1N3 81.0 C9X—C8X—C7X 118.9 (10)
N1—C1—C2 132.12 (10) C13X—C8X—C7X 120.6 (10)
N1—C1—C6 104.97 (10) C10X—C9X—C8X 121.7 (10)
C2—C1—C6 122.91 (10) C10X—C9X—H9XA 119.2
C1—C2—C3 116.55 (10) C8X—C9X—H9XA 119.2
C1—C2—H2A 121.7 C9X—C10X—C11X 118.3 (12)
C3—C2—H2A 121.7 C9X—C10X—H10B 120.8
C2—C3—C4 121.30 (12) C11X—C10X—H10B 120.8
C2—C3—H3A 119.4 C12X—C11X—C10X 120.9 (13)
C4—C3—H3A 119.4 C12X—C11X—H11B 119.5
C5—C4—C3 121.71 (11) C10X—C11X—H11B 119.5
C5—C4—H4A 119.1 C11X—C12X—C13X 122.3 (12)
C3—C4—H4A 119.1 C11X—C12X—H12B 118.8
C4—C5—C6 117.71 (10) C13X—C12X—H12B 118.8
C4—C5—H5A 121.1 C12X—C13X—C8X 116.3 (10)
C6—C5—H5A 121.1 C12X—C13X—N3X 126.9 (11)
N2—C6—C5 130.04 (10) C8X—C13X—N3X 116.8 (10)
N1—C14—C15—C16 6.57 (13) C9—C10—C11—C12 −1.08 (18)
N3—C14—C15—C16 −114.14 (10) C10—C11—C12—C13 1.18 (17)
N3X—C14—C15—C16 74.4 (5) C14—N3—C13—C12 −154.10 (9)
N1X—C14—C15—C16 −39.6 (4) C14—N3—C13—C8 30.38 (13)
N1—C14—C15—C20 −174.80 (8) C11—C12—C13—N3 −175.88 (10)
N3—C14—C15—C20 64.49 (11) C11—C12—C13—C8 −0.33 (15)
N3X—C14—C15—C20 −107.0 (5) C9—C8—C13—N3 175.03 (9)
N1X—C14—C15—C20 139.0 (4) C7—C8—C13—N3 −3.20 (13)
C20—C15—C16—C17 −1.02 (14) C9—C8—C13—C12 −0.59 (14)
C14—C15—C16—C17 177.62 (9) C7—C8—C13—C12 −178.82 (9)
C15—C16—C17—C18 0.38 (15) N1—C14—N1X—C1X −179.2 (14)
C16—C17—C18—C19 0.31 (14) N3—C14—N1X—C1X 27.4 (9)
C16—C17—C18—C21 177.94 (9) N3X—C14—N1X—C1X 160.2 (10)
C17—C18—C19—C20 −0.36 (13) C15—C14—N1X—C1X −80.1 (10)
C21—C18—C19—C20 −177.97 (8) N1—C14—N1X—C7X −10.8 (12)
C18—C19—C20—O1 179.97 (8) N3—C14—N1X—C7X −164.3 (15)
C18—C19—C20—C15 −0.29 (13) N3X—C14—N1X—C7X −31.4 (15)
C16—C15—C20—O1 −179.28 (8) C15—C14—N1X—C7X 88.3 (14)
C14—C15—C20—O1 2.03 (12) N1—C14—N3X—C13X 28.9 (9)
C16—C15—C20—C19 0.97 (13) N3—C14—N3X—C13X 116.0 (10)
C14—C15—C20—C19 −177.72 (8) N1X—C14—N3X—C13X 44.5 (12)
N3—C14—N1—C7 36.05 (12) C15—C14—N3X—C13X −74.9 (11)
N3X—C14—N1—C7 167.5 (5) C7X—N1X—C1X—C6X 0.4 (14)
N1X—C14—N1—C7 10.3 (6) C14—N1X—C1X—C6X 170.7 (9)
C15—C14—N1—C7 −88.30 (11) C7X—N1X—C1X—C2X −178.8 (13)
N3—C14—N1—C1 −161.62 (9) C14—N1X—C1X—C2X −8.5 (18)
N3X—C14—N1—C1 −30.1 (5) C6X—C1X—C2X—C3X 0.9 (18)
N1X—C14—N1—C1 172.6 (6) N1X—C1X—C2X—C3X 180.0 (13)
C15—C14—N1—C1 74.02 (11) C1X—C2X—C3X—C4X −2(2)
N1—C14—N3—C13 −43.94 (11) C2X—C3X—C4X—C5X 2(3)
N3X—C14—N3—C13 −111.7 (6) C3X—C4X—C5X—C6X −1(2)
N1X—C14—N3—C13 −25.4 (4) C2X—C1X—C6X—C5X 0.1 (18)
C15—C14—N3—C13 79.37 (10) N1X—C1X—C6X—C5X −179.1 (11)
C7—N1—C1—C2 177.61 (11) C2X—C1X—C6X—N2X 179.9 (10)
C14—N1—C1—C2 12.99 (17) N1X—C1X—C6X—N2X 0.6 (13)
C7—N1—C1—C6 −1.60 (10) C4X—C5X—C6X—C1X −0.2 (19)
C14—N1—C1—C6 −166.22 (8) C4X—C5X—C6X—N2X −179.9 (13)
N1—C1—C2—C3 −179.53 (10) C7X—N2X—C6X—C1X −1.4 (16)
C6—C1—C2—C3 −0.44 (15) C7X—N2X—C6X—C5X 178.3 (15)
C1—C2—C3—C4 0.29 (16) C6X—N2X—C7X—N1X 1.6 (19)
C2—C3—C4—C5 −0.32 (17) C6X—N2X—C7X—C8X −178.1 (19)
C3—C4—C5—C6 0.48 (16) C1X—N1X—C7X—N2X −1.4 (19)
C7—N2—C6—C5 −178.71 (10) C14—N1X—C7X—N2X −171.5 (11)
C7—N2—C6—C1 0.18 (11) C1X—N1X—C7X—C8X 178.5 (13)
C4—C5—C6—N2 178.19 (10) C14—N1X—C7X—C8X 8(2)
C4—C5—C6—C1 −0.61 (14) N2X—C7X—C8X—C9X 6(3)
N1—C1—C6—N2 0.90 (10) N1X—C7X—C8X—C9X −173.3 (13)
C2—C1—C6—N2 −178.40 (9) N2X—C7X—C8X—C13X −171.4 (19)
N1—C1—C6—C5 179.92 (9) N1X—C7X—C8X—C13X 9(2)
C2—C1—C6—C5 0.62 (15) C13X—C8X—C9X—C10X −2.4 (18)
C6—N2—C7—N1 −1.25 (11) C7X—C8X—C9X—C10X 179.7 (14)
C6—N2—C7—C8 179.60 (10) C8X—C9X—C10X—C11X 1(2)
C1—N1—C7—N2 1.86 (12) C9X—C10X—C11X—C12X 0(2)
C14—N1—C7—N2 167.20 (8) C10X—C11X—C12X—C13X −1(2)
C1—N1—C7—C8 −178.89 (9) C11X—C12X—C13X—C8X −1(2)
C14—N1—C7—C8 −13.55 (14) C11X—C12X—C13X—N3X 176.7 (14)
N2—C7—C8—C9 −4.22 (17) C9X—C8X—C13X—C12X 2.0 (18)
N1—C7—C8—C9 176.67 (9) C7X—C8X—C13X—C12X 179.9 (14)
N2—C7—C8—C13 173.96 (10) C9X—C8X—C13X—N3X −175.5 (11)
N1—C7—C8—C13 −5.15 (14) C7X—C8X—C13X—N3X 2.3 (19)
C13—C8—C9—C10 0.68 (15) C14—N3X—C13X—C12X 148.8 (13)
C7—C8—C9—C10 178.80 (10) C14—N3X—C13X—C8X −33.9 (17)
C8—C9—C10—C11 0.14 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1N3···O1 0.90 2.39 2.9655 (11) 123
O1—H1O1···N2i 0.919 (16) 1.830 (16) 2.7038 (10) 158.0 (15)

Symmetry codes: (i) x, −y+1, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2779).

References

  1. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  3. Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007). Acta Cryst. E63, o4141–o4142.
  4. Eltayeb, N. E., Teoh, S. G., Quah, C. K., Fun, H.-K. & Adnan, R. (2009). Acta Cryst. E65, o1613–o1614. [DOI] [PMC free article] [PubMed]
  5. Eltayeb, N. E., Teoh, S. G., Yeap, C. S. & Fun, H.-K. (2011). Acta Cryst. E67, o1721–o1722. [DOI] [PMC free article] [PubMed]
  6. Harrell, C. C., Kohli, P., Siwy, Z. & Martin, C. R. (2004). J. Am. Chem. Soc. 126, 15646–15647. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Sun, T., Li, K., Lai, Y., Chen, R. & Wu, H. (2010). Acta Cryst. E66, m1058. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811032673/tk2779sup1.cif

e-67-o2373-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811032673/tk2779Isup2.hkl

e-67-o2373-Isup2.hkl (295.7KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811032673/tk2779Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES