Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2335. doi: 10.1107/S1600536811031825

(E)-N-[(6-Bromo­pyridin-2-yl)methyl­idene]-4-methyl­aniline

Mingjian Cai a,*, Penggao Ma b, Xiuge Wang a, Tao Sun a
PMCID: PMC3200581  PMID: 22058956

Abstract

The title compound, C13H11BrN2, a Schiff base obtained from 6-bromo­picolinaldehyde and p-toluidine, has an E configuration about the C=N bond. The dihedral angle between the benzene and pyridine rings is 30.4 (1)°.

Related literature

For Schiff base complexes with transition metals, see: Burkhardt & Plass (2008); Keypour et al. (2011); Tarafder et al. (2002). For their complexing ability towards toxic metals, see: Kocyigit et al. (2010);graphic file with name e-67-o2335-scheme1.jpg

Experimental

Crystal data

  • C13H11BrN2

  • M r = 275.15

  • Orthorhombic, Inline graphic

  • a = 13.542 (3) Å

  • b = 6.1544 (15) Å

  • c = 27.620 (7) Å

  • V = 2301.9 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 3.54 mm−1

  • T = 113 K

  • 0.20 × 0.08 × 0.04 mm

Data collection

  • Rigaku Saturn724 CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) T min = 0.538, T max = 0.871

  • 21379 measured reflections

  • 2750 independent reflections

  • 2251 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.104

  • S = 1.08

  • 2750 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.91 e Å−3

  • Δρmin = −0.66 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Crystal Impact, 2009); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2006).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031825/ld2022sup1.cif

e-67-o2335-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031825/ld2022Isup2.hkl

e-67-o2335-Isup2.hkl (135.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031825/ld2022Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Schiff bases have played an important role in the development of coordination chemistry as they readily form stable complexes with most of the transition metals (Burkhardt & Plass, 2008; Keypour, et al., 2011; Tarafder, et al., 2002). They show important properties, e.g. an ability to reversibly bind oxygen, catalytic activity in hydrogenation of olefins, transfer of amino group, photochromic properties and complexing ability towards toxic metals (Kocyigit et al., 2010). In this paper, the structure of the new Schiff base derived from condensation of 6-bromopicolinaldehyde with p-toluidine is reported. The molecule of the title compound, Fig. 1, possesses an E configuration about the C6=N2 bond.

Experimental

The solution of 6-bromopicolinaldehyde and p-toluidine in methanol was refluxed for 2 h, and then the crude product was isolated by filtration and recrystallized from methanol to yield yellowish title compound. Finally, the title compound was dissolved in a small amount of methanol and the solution was kept for 5 days at ambient temperature to give rise to yellowish block-like crystals on slowly evaporating the solvent.

Refinement

The hydrogen atoms were positioned geometrically (C—H=0.93–0.98 Å) and refined using a riding model, with Uiso(H)=1.2 or 1.5Ueq(C) (methyl group). The methyl group position was rotationally optimized (AFIX 137)

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C13H11BrN2 Dx = 1.588 Mg m3
Mr = 275.15 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pbca Cell parameters from 6762 reflections
a = 13.542 (3) Å θ = 2.1–28.0°
b = 6.1544 (15) Å µ = 3.54 mm1
c = 27.620 (7) Å T = 113 K
V = 2301.9 (10) Å3 Prism, colorless
Z = 8 0.20 × 0.08 × 0.04 mm
F(000) = 1104

Data collection

Rigaku Saturn724 CCD diffractometer 2750 independent reflections
Radiation source: rotating anode 2251 reflections with I > 2σ(I)
multilayer Rint = 0.044
Detector resolution: 14.22 pixels mm-1 θmax = 27.9°, θmin = 2.1°
ω and φ scans h = −17→17
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2002) k = −7→8
Tmin = 0.538, Tmax = 0.871 l = −36→36
21379 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0529P)2] where P = (Fo2 + 2Fc2)/3
2750 reflections (Δ/σ)max = 0.002
146 parameters Δρmax = 0.91 e Å3
0 restraints Δρmin = −0.66 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt)etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.38420 (2) 0.10293 (5) 0.750452 (7) 0.03018 (13)
N1 0.38367 (13) 0.1724 (3) 0.65201 (6) 0.0218 (4)
N2 0.38262 (12) 0.2660 (3) 0.52490 (7) 0.0219 (4)
C1 0.37666 (14) 0.2783 (4) 0.69322 (8) 0.0215 (5)
C2 0.36569 (15) 0.5001 (4) 0.69829 (8) 0.0247 (5)
H2 0.3618 0.5667 0.7293 0.030*
C3 0.36066 (16) 0.6208 (4) 0.65619 (9) 0.0250 (5)
H3 0.3531 0.7742 0.6576 0.030*
C4 0.36681 (14) 0.5157 (4) 0.61200 (8) 0.0224 (5)
H4 0.3629 0.5959 0.5827 0.027*
C5 0.37868 (14) 0.2921 (4) 0.61109 (8) 0.0209 (5)
C6 0.38647 (15) 0.1703 (4) 0.56563 (8) 0.0221 (5)
H6 0.3945 0.0171 0.5666 0.027*
C7 0.38278 (14) 0.1445 (4) 0.48137 (8) 0.0219 (5)
C8 0.41670 (16) 0.2481 (4) 0.43969 (7) 0.0234 (5)
H8 0.4428 0.3912 0.4417 0.028*
C9 0.41266 (17) 0.1437 (4) 0.39534 (8) 0.0272 (5)
H9 0.4372 0.2151 0.3673 0.033*
C10 0.37303 (14) −0.0649 (4) 0.39118 (9) 0.0228 (5)
C11 0.33938 (16) −0.1659 (4) 0.43272 (8) 0.0246 (5)
H11 0.3123 −0.3079 0.4305 0.030*
C12 0.34413 (15) −0.0651 (4) 0.47738 (8) 0.0224 (5)
H12 0.3211 −0.1387 0.5054 0.027*
C14 0.36452 (17) −0.1756 (5) 0.34244 (9) 0.0332 (6)
H14A 0.2966 −0.1623 0.3305 0.050*
H14B 0.3816 −0.3296 0.3458 0.050*
H14C 0.4098 −0.1065 0.3195 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0412 (2) 0.0310 (2) 0.01834 (17) 0.00145 (10) −0.00218 (9) 0.00303 (9)
N1 0.0239 (10) 0.0212 (11) 0.0203 (10) 0.0009 (7) −0.0008 (7) 0.0006 (8)
N2 0.0218 (10) 0.0232 (12) 0.0207 (10) −0.0010 (8) 0.0013 (7) −0.0021 (8)
C1 0.0207 (11) 0.0236 (13) 0.0202 (11) −0.0007 (9) −0.0009 (8) 0.0007 (9)
C2 0.0257 (12) 0.0267 (14) 0.0217 (12) −0.0008 (9) 0.0000 (9) −0.0063 (10)
C3 0.0302 (13) 0.0200 (13) 0.0247 (13) 0.0017 (9) −0.0008 (9) −0.0018 (10)
C4 0.0251 (11) 0.0218 (14) 0.0203 (12) 0.0004 (9) 0.0011 (8) 0.0012 (10)
C5 0.0180 (11) 0.0243 (13) 0.0203 (11) 0.0000 (9) 0.0000 (7) 0.0003 (10)
C6 0.0234 (11) 0.0196 (13) 0.0234 (12) 0.0022 (9) −0.0011 (8) −0.0026 (9)
C7 0.0177 (11) 0.0277 (14) 0.0202 (12) 0.0034 (9) −0.0005 (8) −0.0002 (9)
C8 0.0229 (11) 0.0228 (13) 0.0246 (11) −0.0002 (9) 0.0027 (9) 0.0034 (9)
C9 0.0245 (12) 0.0361 (15) 0.0209 (11) −0.0004 (10) 0.0042 (9) 0.0034 (10)
C10 0.0182 (11) 0.0300 (14) 0.0201 (12) 0.0019 (9) −0.0004 (8) −0.0048 (10)
C11 0.0223 (11) 0.0236 (13) 0.0279 (12) −0.0002 (9) −0.0030 (9) −0.0026 (9)
C12 0.0226 (11) 0.0231 (13) 0.0214 (11) −0.0010 (9) −0.0011 (8) 0.0028 (9)
C14 0.0325 (14) 0.0452 (17) 0.0220 (13) −0.0019 (11) −0.0001 (9) −0.0088 (12)

Geometric parameters (Å, °)

Br1—C1 1.917 (2) C7—C8 1.394 (3)
N1—C1 1.316 (3) C7—C12 1.397 (3)
N1—C5 1.351 (3) C8—C9 1.384 (3)
N2—C6 1.271 (3) C8—H8 0.9500
N2—C7 1.416 (3) C9—C10 1.397 (3)
C1—C2 1.380 (3) C9—H9 0.9500
C2—C3 1.382 (3) C10—C11 1.382 (3)
C2—H2 0.9500 C10—C14 1.513 (3)
C3—C4 1.384 (3) C11—C12 1.382 (3)
C3—H3 0.9500 C11—H11 0.9500
C4—C5 1.386 (4) C12—H12 0.9500
C4—H4 0.9500 C14—H14A 0.9800
C5—C6 1.466 (3) C14—H14B 0.9800
C6—H6 0.9500 C14—H14C 0.9800
C1—N1—C5 116.7 (2) C12—C7—N2 123.7 (2)
C6—N2—C7 120.5 (2) C9—C8—C7 120.4 (2)
N1—C1—C2 125.9 (2) C9—C8—H8 119.8
N1—C1—Br1 115.50 (17) C7—C8—H8 119.8
C2—C1—Br1 118.63 (17) C8—C9—C10 121.0 (2)
C1—C2—C3 116.8 (2) C8—C9—H9 119.5
C1—C2—H2 121.6 C10—C9—H9 119.5
C3—C2—H2 121.6 C11—C10—C9 118.2 (2)
C2—C3—C4 119.2 (2) C11—C10—C14 120.8 (2)
C2—C3—H3 120.4 C9—C10—C14 121.1 (2)
C4—C3—H3 120.4 C10—C11—C12 121.6 (2)
C3—C4—C5 119.1 (2) C10—C11—H11 119.2
C3—C4—H4 120.4 C12—C11—H11 119.2
C5—C4—H4 120.4 C11—C12—C7 120.1 (2)
N1—C5—C4 122.2 (2) C11—C12—H12 119.9
N1—C5—C6 115.7 (2) C7—C12—H12 119.9
C4—C5—C6 122.1 (2) C10—C14—H14A 109.5
N2—C6—C5 121.2 (2) C10—C14—H14B 109.5
N2—C6—H6 119.4 H14A—C14—H14B 109.5
C5—C6—H6 119.4 C10—C14—H14C 109.5
C8—C7—C12 118.7 (2) H14A—C14—H14C 109.5
C8—C7—N2 117.4 (2) H14B—C14—H14C 109.5
C5—N1—C1—C2 −0.7 (3) C6—N2—C7—C8 −155.5 (2)
C5—N1—C1—Br1 −179.94 (14) C6—N2—C7—C12 29.6 (3)
N1—C1—C2—C3 0.7 (3) C12—C7—C8—C9 −0.5 (3)
Br1—C1—C2—C3 179.93 (15) N2—C7—C8—C9 −175.66 (19)
C1—C2—C3—C4 −0.1 (3) C7—C8—C9—C10 1.2 (3)
C2—C3—C4—C5 −0.5 (3) C8—C9—C10—C11 −1.0 (3)
C1—N1—C5—C4 0.0 (3) C8—C9—C10—C14 177.4 (2)
C1—N1—C5—C6 −179.88 (17) C9—C10—C11—C12 0.1 (3)
C3—C4—C5—N1 0.6 (3) C14—C10—C11—C12 −178.3 (2)
C3—C4—C5—C6 −179.54 (19) C10—C11—C12—C7 0.6 (3)
C7—N2—C6—C5 −175.22 (17) C8—C7—C12—C11 −0.4 (3)
N1—C5—C6—N2 179.92 (19) N2—C7—C12—C11 174.45 (19)
C4—C5—C6—N2 0.0 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2022).

References

  1. Burkhardt, A. & Plass, W. (2008). Inorg. Chem. Commun. 11, 303–306.
  2. Crystal Impact (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Keypour, H., Arzhangi, P., Rahpeyma, N., Rezaeivala, M., Elerman, Y. & Khavasi, H. R. (2011). Inorg. Chim. Acta, 367, 9–14.
  4. Kocyigit, O., Kursunlu, A. N. & Guler, E. (2010). J. Hazard. Mater. 183, 334–340. [DOI] [PubMed]
  5. Rigaku/MSC (2002). CrystalClear Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2006). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Tarafder, M. T. H., Khoo, T. J., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2002). Polyhedron, 21, 2691–2698.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031825/ld2022sup1.cif

e-67-o2335-sup1.cif (15.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031825/ld2022Isup2.hkl

e-67-o2335-Isup2.hkl (135.1KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031825/ld2022Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES