Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 17;67(Pt 9):o2344. doi: 10.1107/S1600536811031916

3-{1-[2-(2-Chloro­phen­yl)hydrazinyl­idene]-2,2,2-trifluoro­eth­yl}-7-diethyl­amino-2H-chromen-2-one

Hao Chen a, Li Cai a, Chaochao Yu a, Hongqi Li a,*
PMCID: PMC3200584  PMID: 22058963

Abstract

The title compound, C21H19ClF3N3O2, has a structure related to other coumarin derivatives that have been used as fluorescent probes of metal ions. The dihedral angle between the coumarin ring system and the chlorobenzene ring is 42.99 (9)°. Intra­molecular hydrogen bonding occurs via N—H⋯O and N—H⋯Cl inter­actions, generating S(7) and S(5) rings, respectively. The crystal packing is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For applications of coumarins and coumarin derivatives, see: Trenor et al. (2004); Starcevic et al. (2011); Danko et al. (2011). For the synthesis of the title compound and related structures, see: Li et al. (2011).graphic file with name e-67-o2344-scheme1.jpg

Experimental

Crystal data

  • C21H19ClF3N3O2

  • M r = 437.84

  • Orthorhombic, Inline graphic

  • a = 7.940 (6) Å

  • b = 12.602 (9) Å

  • c = 20.233 (15) Å

  • V = 2025 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.954, T max = 0.958

  • 10369 measured reflections

  • 3576 independent reflections

  • 3162 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.078

  • S = 1.03

  • 3576 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 1511 Friedel pairs

  • Flack parameter: −0.09 (6)

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031916/lr2022sup1.cif

e-67-o2344-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031916/lr2022Isup2.hkl

e-67-o2344-Isup2.hkl (175.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031916/lr2022Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯Cl1 0.86 2.57 2.960 (2) 109
N3—H3A⋯O2 0.86 2.22 2.761 (3) 121
C14—H14⋯O2i 0.93 2.55 3.316 (3) 140

Symmetry code: (i) Inline graphic.

Acknowledgments

Financial support by the Fundamental Research Funds for the Central Universities was acknowledged.

supplementary crystallographic information

Comment

Because the structure of benzopyrone has many advantages including high fluorescence quantum yield, large Stokes shift, excellent light stability, and less toxicity coumairns have been widely used in the fields of biology, medicine (Starcevic et al., 2011), perfumes, cosmetics (Trenor et al., 2004), and fluorescent dyes (Danko et al., 2011). We have synthesized a series of novel coumarin derivatives and found that one of them 3-(2-benzoylhydrazonotrifluoroethyl)-7- (N,N-diethylamino)coumarin can be used as fluorescent probes of Cu(II) and Ni(II) (Li et al., 2011). Herein we report the single-crystal structure of 3-(2-Chlorophenylhydrazonotrifluoroethyl)-7-(N,N- diethylamino)coumarin, which may be a good candidate for fluorescent probe of metal ions.

Experimental

The title compound was prepared as reported in the literature (Li et al., 2011). Red orange single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from a 1:1 petroleum ether and ethyl acetate mixture.

Refinement

All H atoms were placed at calculated positions and refined using a riding model approximation, with C—H = 0.93–0.97 Å and with Uiso(H)=1.2 (1.5 for methyl groups) times Ueq(C). A distance of 0.86 Å was assumed for the N3—H3A bond.

Figures

Fig. 1.

Fig. 1.

ORTEP plot of the title compound with displacement ellipsoids at the 30% probability level. H atoms are omitted for clarity.

Crystal data

C21H19ClF3N3O2 Dx = 1.436 Mg m3
Mr = 437.84 Melting point = 423–425 K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
a = 7.940 (6) Å Cell parameters from 3770 reflections
b = 12.602 (9) Å θ = 2.6–24.7°
c = 20.233 (15) Å µ = 0.24 mm1
V = 2025 (3) Å3 T = 296 K
Z = 4 Block, orange
F(000) = 904 0.20 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 3576 independent reflections
Radiation source: fine-focus sealed tube 3162 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 25.1°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.954, Tmax = 0.958 k = −15→9
10369 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1045P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.001
3576 reflections Δρmax = 0.15 e Å3
273 parameters Δρmin = −0.21 e Å3
0 restraints Absolute structure: Flack (1983), 1511 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.09 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 −0.0571 (3) 0.51038 (15) 0.15673 (9) 0.0426 (5)
C2 −0.0012 (3) 0.46256 (15) 0.09683 (10) 0.0479 (5)
H2 0.0292 0.3913 0.0970 0.058*
C3 0.0088 (3) 0.51828 (14) 0.03965 (10) 0.0450 (5)
H3 0.0447 0.4842 0.0014 0.054*
C4 −0.0343 (2) 0.62689 (14) 0.03692 (9) 0.0382 (4)
C5 −0.0249 (2) 0.69109 (14) −0.01980 (10) 0.0391 (4)
H5 0.0082 0.6604 −0.0595 0.047*
C6 −0.0629 (2) 0.79729 (14) −0.01872 (9) 0.0358 (4)
C7 −0.1134 (3) 0.84426 (14) 0.04343 (9) 0.0392 (4)
C8 −0.0900 (2) 0.67227 (13) 0.09569 (9) 0.0366 (4)
C9 −0.1056 (3) 0.61729 (14) 0.15382 (9) 0.0415 (5)
H9 −0.1481 0.6508 0.1912 0.050*
C10 −0.0636 (2) 0.86150 (14) −0.08005 (8) 0.0363 (4)
C11 0.1033 (2) 1.12141 (14) −0.06355 (9) 0.0382 (4)
C12 0.1722 (3) 1.18859 (16) −0.01670 (10) 0.0471 (5)
C13 0.2242 (3) 1.29033 (17) −0.03257 (12) 0.0564 (6)
H13 0.2701 1.3341 −0.0003 0.068*
C14 0.2075 (3) 1.32630 (17) −0.09657 (12) 0.0613 (6)
H14 0.2430 1.3942 −0.1080 0.074*
C15 0.1377 (3) 1.26061 (16) −0.14320 (11) 0.0559 (6)
H15 0.1242 1.2851 −0.1862 0.067*
C16 0.0874 (3) 1.15921 (15) −0.12760 (10) 0.0456 (5)
H16 0.0424 1.1157 −0.1603 0.055*
C17 −0.1226 (3) 0.80735 (15) −0.14206 (10) 0.0434 (5)
C18 0.0107 (3) 0.34867 (17) 0.21991 (12) 0.0607 (6)
H18A −0.0171 0.3080 0.1807 0.073*
H18B −0.0374 0.3124 0.2578 0.073*
C19 0.1987 (3) 0.3531 (2) 0.22744 (16) 0.0921 (9)
H19A 0.2465 0.3907 0.1907 0.138*
H19B 0.2431 0.2823 0.2287 0.138*
H19C 0.2266 0.3892 0.2678 0.138*
C20 −0.1199 (3) 0.50530 (18) 0.27618 (10) 0.0596 (6)
H20A −0.0763 0.5772 0.2778 0.071*
H20B −0.0738 0.4667 0.3135 0.071*
C21 −0.3098 (3) 0.50846 (19) 0.28210 (12) 0.0698 (7)
H21A −0.3558 0.5489 0.2462 0.105*
H21B −0.3405 0.5411 0.3233 0.105*
H21C −0.3535 0.4375 0.2807 0.105*
Cl1 0.19498 (10) 1.14505 (5) 0.06447 (3) 0.0753 (2)
F1 −0.24651 (16) 0.73715 (9) −0.13101 (6) 0.0567 (3)
F2 0.00093 (17) 0.75115 (10) −0.17132 (6) 0.0632 (4)
F3 −0.17985 (19) 0.87363 (10) −0.18810 (5) 0.0661 (4)
N1 −0.0641 (2) 0.45457 (13) 0.21455 (9) 0.0514 (4)
N2 −0.0139 (2) 0.95674 (12) −0.09268 (8) 0.0397 (4)
N3 0.0552 (2) 1.01831 (12) −0.04584 (8) 0.0437 (4)
H3A 0.0694 0.9952 −0.0062 0.052*
O1 −0.12920 (18) 0.77888 (9) 0.09745 (6) 0.0415 (3)
O2 −0.1471 (2) 0.93702 (10) 0.05297 (6) 0.0522 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0369 (11) 0.0411 (11) 0.0499 (11) −0.0028 (9) −0.0021 (9) 0.0060 (9)
C2 0.0502 (13) 0.0323 (10) 0.0613 (12) 0.0059 (10) 0.0028 (11) 0.0016 (9)
C3 0.0496 (12) 0.0335 (10) 0.0520 (11) 0.0050 (9) 0.0082 (10) −0.0049 (9)
C4 0.0382 (11) 0.0322 (9) 0.0441 (10) 0.0007 (8) 0.0012 (8) −0.0024 (8)
C5 0.0382 (11) 0.0361 (10) 0.0430 (10) 0.0023 (8) 0.0020 (9) −0.0069 (8)
C6 0.0337 (10) 0.0334 (9) 0.0404 (10) −0.0007 (8) 0.0015 (8) −0.0041 (8)
C7 0.0395 (11) 0.0338 (10) 0.0441 (10) 0.0006 (9) 0.0034 (9) −0.0006 (8)
C8 0.0356 (11) 0.0283 (9) 0.0458 (11) 0.0003 (8) −0.0020 (9) −0.0039 (8)
C9 0.0448 (12) 0.0373 (10) 0.0423 (11) −0.0002 (9) 0.0035 (9) −0.0008 (8)
C10 0.0359 (11) 0.0332 (10) 0.0398 (10) 0.0001 (8) −0.0001 (8) −0.0045 (8)
C11 0.0341 (11) 0.0338 (9) 0.0467 (10) 0.0001 (8) 0.0010 (9) −0.0045 (9)
C12 0.0439 (12) 0.0480 (12) 0.0493 (11) −0.0006 (9) −0.0033 (10) −0.0109 (9)
C13 0.0489 (14) 0.0448 (12) 0.0755 (15) −0.0057 (11) 0.0002 (12) −0.0199 (11)
C14 0.0652 (17) 0.0379 (11) 0.0809 (16) −0.0099 (11) 0.0106 (14) −0.0033 (12)
C15 0.0653 (15) 0.0442 (12) 0.0584 (12) −0.0021 (11) 0.0072 (12) 0.0072 (11)
C16 0.0494 (12) 0.0402 (11) 0.0470 (11) −0.0022 (9) 0.0002 (10) −0.0045 (9)
C17 0.0439 (12) 0.0416 (10) 0.0448 (11) 0.0006 (10) 0.0007 (10) −0.0035 (9)
C18 0.0596 (15) 0.0501 (13) 0.0723 (14) 0.0051 (12) 0.0076 (13) 0.0251 (12)
C19 0.0581 (18) 0.098 (2) 0.120 (2) 0.0182 (16) 0.0011 (17) 0.0512 (19)
C20 0.0794 (18) 0.0557 (13) 0.0437 (12) 0.0008 (13) −0.0060 (11) 0.0080 (10)
C21 0.0807 (19) 0.0722 (16) 0.0566 (14) 0.0012 (15) 0.0098 (13) 0.0013 (12)
Cl1 0.0938 (5) 0.0819 (4) 0.0501 (3) −0.0075 (4) −0.0206 (3) −0.0080 (3)
F1 0.0522 (7) 0.0562 (7) 0.0616 (7) −0.0130 (6) −0.0040 (6) −0.0129 (6)
F2 0.0581 (8) 0.0710 (8) 0.0604 (7) 0.0048 (7) 0.0106 (6) −0.0272 (6)
F3 0.0926 (11) 0.0582 (8) 0.0474 (7) 0.0008 (7) −0.0190 (7) −0.0007 (6)
N1 0.0567 (12) 0.0434 (9) 0.0542 (10) 0.0047 (9) 0.0003 (9) 0.0121 (8)
N2 0.0408 (10) 0.0356 (9) 0.0429 (8) 0.0006 (7) 0.0006 (7) −0.0048 (7)
N3 0.0537 (11) 0.0375 (8) 0.0398 (9) −0.0064 (8) −0.0056 (7) −0.0017 (7)
O1 0.0534 (9) 0.0311 (6) 0.0401 (7) 0.0056 (6) 0.0076 (6) −0.0014 (6)
O2 0.0747 (11) 0.0300 (7) 0.0519 (8) 0.0090 (7) 0.0138 (8) −0.0026 (6)

Geometric parameters (Å, °)

C1—N1 1.366 (3) C13—H13 0.9300
C1—C9 1.402 (3) C14—C15 1.372 (3)
C1—C2 1.424 (3) C14—H14 0.9300
C2—C3 1.356 (3) C15—C16 1.376 (3)
C2—H2 0.9300 C15—H15 0.9300
C3—C4 1.412 (3) C16—H16 0.9300
C3—H3 0.9300 C17—F3 1.331 (2)
C4—C8 1.392 (3) C17—F1 1.342 (2)
C4—C5 1.406 (3) C17—F2 1.347 (2)
C5—C6 1.372 (3) C18—N1 1.465 (3)
C5—H5 0.9300 C18—C19 1.501 (4)
C6—C7 1.447 (3) C18—H18A 0.9700
C6—C10 1.481 (3) C18—H18B 0.9700
C7—O2 1.215 (2) C19—H19A 0.9600
C7—O1 1.374 (2) C19—H19B 0.9600
C8—C9 1.371 (3) C19—H19C 0.9600
C8—O1 1.380 (2) C20—N1 1.470 (3)
C9—H9 0.9300 C20—C21 1.513 (4)
C10—N2 1.289 (2) C20—H20A 0.9700
C10—C17 1.503 (3) C20—H20B 0.9700
C11—C12 1.384 (3) C21—H21A 0.9600
C11—C16 1.387 (3) C21—H21B 0.9600
C11—N3 1.401 (2) C21—H21C 0.9600
C12—C13 1.385 (3) N2—N3 1.342 (2)
C12—Cl1 1.741 (2) N3—H3A 0.8600
C13—C14 1.378 (3)
N1—C1—C9 121.30 (18) C14—C15—H15 119.3
N1—C1—C2 121.56 (18) C16—C15—H15 119.3
C9—C1—C2 117.14 (17) C15—C16—C11 120.48 (19)
C3—C2—C1 121.68 (18) C15—C16—H16 119.8
C3—C2—H2 119.2 C11—C16—H16 119.8
C1—C2—H2 119.2 F3—C17—F1 106.26 (17)
C2—C3—C4 121.42 (17) F3—C17—F2 105.71 (17)
C2—C3—H3 119.3 F1—C17—F2 105.10 (15)
C4—C3—H3 119.3 F3—C17—C10 113.93 (16)
C8—C4—C5 118.53 (16) F1—C17—C10 112.88 (16)
C8—C4—C3 116.23 (16) F2—C17—C10 112.26 (17)
C5—C4—C3 125.24 (17) N1—C18—C19 112.1 (2)
C6—C5—C4 122.46 (18) N1—C18—H18A 109.2
C6—C5—H5 118.8 C19—C18—H18A 109.2
C4—C5—H5 118.8 N1—C18—H18B 109.2
C5—C6—C7 118.29 (18) C19—C18—H18B 109.2
C5—C6—C10 121.36 (17) H18A—C18—H18B 107.9
C7—C6—C10 120.22 (16) C18—C19—H19A 109.5
O2—C7—O1 115.49 (16) C18—C19—H19B 109.5
O2—C7—C6 126.37 (17) H19A—C19—H19B 109.5
O1—C7—C6 118.12 (15) C18—C19—H19C 109.5
C9—C8—O1 116.72 (16) H19A—C19—H19C 109.5
C9—C8—C4 123.65 (17) H19B—C19—H19C 109.5
O1—C8—C4 119.61 (16) N1—C20—C21 112.3 (2)
C8—C9—C1 119.79 (17) N1—C20—H20A 109.1
C8—C9—H9 120.1 C21—C20—H20A 109.1
C1—C9—H9 120.1 N1—C20—H20B 109.1
N2—C10—C6 132.33 (16) C21—C20—H20B 109.1
N2—C10—C17 110.65 (16) H20A—C20—H20B 107.9
C6—C10—C17 116.90 (16) C20—C21—H21A 109.5
C12—C11—C16 117.78 (18) C20—C21—H21B 109.5
C12—C11—N3 120.01 (18) H21A—C21—H21B 109.5
C16—C11—N3 122.20 (17) C20—C21—H21C 109.5
C11—C12—C13 121.7 (2) H21A—C21—H21C 109.5
C11—C12—Cl1 119.64 (16) H21B—C21—H21C 109.5
C13—C12—Cl1 118.65 (17) C1—N1—C18 121.08 (18)
C14—C13—C12 119.6 (2) C1—N1—C20 120.98 (17)
C14—C13—H13 120.2 C18—N1—C20 117.11 (18)
C12—C13—H13 120.2 C10—N2—N3 121.57 (16)
C15—C14—C13 119.1 (2) N2—N3—C11 117.85 (16)
C15—C14—H14 120.4 N2—N3—H3A 121.1
C13—C14—H14 120.4 C11—N3—H3A 121.1
C14—C15—C16 121.3 (2) C7—O1—C8 122.86 (14)
N1—C1—C2—C3 −178.8 (2) Cl1—C12—C13—C14 179.90 (18)
C9—C1—C2—C3 1.5 (3) C12—C13—C14—C15 0.7 (4)
C1—C2—C3—C4 0.7 (3) C13—C14—C15—C16 −1.3 (4)
C2—C3—C4—C8 −1.1 (3) C14—C15—C16—C11 1.2 (3)
C2—C3—C4—C5 178.8 (2) C12—C11—C16—C15 −0.5 (3)
C8—C4—C5—C6 2.4 (3) N3—C11—C16—C15 −179.3 (2)
C3—C4—C5—C6 −177.6 (2) N2—C10—C17—F3 −27.1 (2)
C4—C5—C6—C7 0.3 (3) C6—C10—C17—F3 156.38 (17)
C4—C5—C6—C10 −175.63 (17) N2—C10—C17—F1 −148.43 (17)
C5—C6—C7—O2 178.2 (2) C6—C10—C17—F1 35.1 (2)
C10—C6—C7—O2 −5.8 (3) N2—C10—C17—F2 93.0 (2)
C5—C6—C7—O1 −3.3 (3) C6—C10—C17—F2 −83.5 (2)
C10—C6—C7—O1 172.71 (16) C9—C1—N1—C18 −170.4 (2)
C5—C4—C8—C9 179.41 (19) C2—C1—N1—C18 9.9 (3)
C3—C4—C8—C9 −0.6 (3) C9—C1—N1—C20 −1.1 (3)
C5—C4—C8—O1 −2.0 (3) C2—C1—N1—C20 179.2 (2)
C3—C4—C8—O1 177.93 (18) C19—C18—N1—C1 77.9 (3)
O1—C8—C9—C1 −175.76 (18) C19—C18—N1—C20 −91.8 (3)
C4—C8—C9—C1 2.8 (3) C21—C20—N1—C1 82.7 (3)
N1—C1—C9—C8 177.09 (18) C21—C20—N1—C18 −107.6 (2)
C2—C1—C9—C8 −3.2 (3) C6—C10—N2—N3 0.4 (3)
C5—C6—C10—N2 −140.5 (2) C17—C10—N2—N3 −175.39 (17)
C7—C6—C10—N2 43.6 (3) C10—N2—N3—C11 −178.98 (17)
C5—C6—C10—C17 35.1 (3) C12—C11—N3—N2 178.80 (17)
C7—C6—C10—C17 −140.80 (19) C16—C11—N3—N2 −2.4 (3)
C16—C11—C12—C13 −0.1 (3) O2—C7—O1—C8 −177.57 (17)
N3—C11—C12—C13 178.75 (19) C6—C7—O1—C8 3.7 (3)
C16—C11—C12—Cl1 −179.98 (15) C9—C8—O1—C7 177.61 (18)
N3—C11—C12—Cl1 −1.2 (3) C4—C8—O1—C7 −1.1 (3)
C11—C12—C13—C14 0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···Cl1 0.86 2.57 2.960 (2) 109.
N3—H3A···O2 0.86 2.22 2.761 (3) 121.
C14—H14···O2i 0.93 2.55 3.316 (3) 140.

Symmetry codes: (i) x+1/2, −y+5/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2022).

References

  1. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2003). APEX2 and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Danko, M., Szabo, E. & Hrdlovic, P. (2011). Dyes Pigments, 90, 129–138.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Li, H., Cai, L., Li, J., Hu, Y., Zhou, P. & Zhang, J. (2011). Dyes Pigments, 91, 309–316.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Starcevic, S., Brozic, P., Turk, S., Cesar, J., Lanisnik Rizner, T. & Gobec, S. (2011). J. Med. Chem. 54, 248–261. [DOI] [PubMed]
  8. Trenor, S. R., Shultz, A. R., Love, B. J. & Long, T. E. (2004). Chem. Rev. 104, 3059–3077. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811031916/lr2022sup1.cif

e-67-o2344-sup1.cif (22.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031916/lr2022Isup2.hkl

e-67-o2344-Isup2.hkl (175.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811031916/lr2022Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES