Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):m1178–m1179. doi: 10.1107/S160053681103008X

Poly[[{μ3-2-[4-(2-hy­droxy­eth­yl)piperazin-1-yl]ethane­sulfonato}­silver(I)] trihydrate]

Stephanie M Bilinovich a, Matthew J Panzner a, Wiley J Youngs a, Thomas C Leeper a,*
PMCID: PMC3200587  PMID: 22058835

Abstract

Ethane­sulfonic acid-based buffers like 2-[4-(2-hy­droxy­eth­yl)­piperazin-1-yl]ethane­sulfonic acid (HEPES) are commonly used in biological experiments because of their ability to act as non-coordinating ligands towards metal ions. However, recent work has shown that some of these buffers may in fact coordinate metal ions. The title complex, {[Ag(C8H17N2O4S)]·3H2O}n, is a metal–organic framework formed from HEPES and a silver(I) ion. In this polymeric complex, each Ag atom is primarily coordinated by two N atoms in a distorted linear geometry. Weaker secondary bonding inter­actions from the hy­droxy and sulfate O atoms of HEPES complete a distorted seesaw geometry. The crystal structure is stabilized by O—H⋯O hydrogen-bonding interactions.

Related literature

For other compounds with silver bound to ethane­sulfonic acid derivatives that are used as buffers, see: Jiang, Liu et al. (2008), where HEPES is used, and Jiang, Ma et al. (2008), where MES is used. For background on metal coordination to buffer compounds like HEPES, see: Soares & Conde (2000); Sokolowska & Bal (2005). For copper complexes of HEPES inter­fering with protein assays, see: Gregory & Sajdera (1970); Lleu & Rebel (1991); Kaushal & Barnes (1986). For general information on HEPES and related buffers, see: Good et al. (1966). graphic file with name e-67-m1178-scheme1.jpg

Experimental

Crystal data

  • [Ag(C8H17N2O4S)]·3H2O

  • M r = 399.21

  • Monoclinic, Inline graphic

  • a = 11.2811 (19) Å

  • b = 10.0973 (17) Å

  • c = 12.875 (2) Å

  • β = 90.910 (3)°

  • V = 1466.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 100 K

  • 0.25 × 0.10 × 0.07 mm

Data collection

  • Bruker APEXI CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.699, T max = 0.900

  • 11308 measured reflections

  • 2946 independent reflections

  • 2446 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.090

  • S = 1.09

  • 2946 reflections

  • 190 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.58 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103008X/mw2014sup1.cif

e-67-m1178-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103008X/mw2014Isup2.hkl

e-67-m1178-Isup2.hkl (144.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Ag1—N1 2.266 (3)
Ag1—N2 2.280 (3)
Ag1—O2i 2.666 (2)
Ag1—O4 2.581 (2)
N1—Ag1—N2 167.73 (11)
N1—Ag1—O2i 92.58 (8)
N1—Ag1—O4 115.41 (8)
N2ii—Ag1—O2i 94.22 (9)
N2—Ag1—O4 75.16 (9)
O2i—Ag1—O4ii 87.18 (7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7C⋯O5iii 0.85 (2) 1.96 (2) 2.777 (4) 161 (4)
O6—H6A⋯O3iv 0.84 (2) 1.88 (2) 2.706 (4) 166 (4)
O6—H6C⋯O1v 0.86 (2) 2.02 (2) 2.868 (4) 169 (4)
O5—H5C⋯O7vi 0.85 (2) 2.01 (2) 2.834 (4) 163 (5)
O5—H5D⋯O6vii 0.86 (2) 2.02 (2) 2.864 (4) 171 (4)
O4—H4⋯O6vii 0.84 1.89 2.726 (4) 178

Symmetry codes: (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

We thank the National Science Foundation (USA) for support for the X-ray facilities at The Univeristy of Akron under the grant CHE-0116041.

supplementary crystallographic information

Comment

HEPES is one of twelve buffers introduced by Good and coworkers as ideal for biological studies based on their physiologically relevant buffering capacities. It was also initially stated that HEPES would not form complexes with metals (Good et al. 1966). However, several studies show that HEPES can form complexes with copper that account for interferences in protein quantification assays like Lowry and BCA (Gregory & Sajdera, 1970; Lleu & Rebel, 1991; Kaushal & Barnes, 1986). In addition, recent electrochemical and spectroscopic studies have shown that HEPES can act as a weak chelator with lead(II) and copper(II) (Soares & Conde, 2000; Sokolowska & Bal, 2005). Due to the recent interest in studying the role that silver(I)-containing compounds play as medicinal agents, the identification of buffers that prevent precipitation or complex formation with silver(I) ion are needed. Based on their established properties it was surmised that one of Good's non-coordinating buffers would be ideal for such investigations. However, as is evident from the title compound, HEPES does in fact form a stable complex with silver(I) ion making it a poor choice for use with systems containing silver ions. In the title compound, the Ag(I) ion is coordinated by one nitrogen atom and one hydroxyl oxygen atom of a HEPES molecule, one nitrogen atom of a second HEPES molecule, and one sulfate oxygen atom from a third HEPES molecule affording a distorted see-saw geometry about the metal center. Precedence for similar weak Ag···O interactions as well as the distorted see-saw geometry can be found in the literature and by a search of the Cambridge Crystallographic Database (Jiang, Liu et al. 2008). As is indicated by the bond distances, the nitrogen atoms form covalent bonds with the Ag(I) atom (2.266 (3) and 2.280 (3) Å) in a near linear fashion (N—Ag—N = 167.73 (11)°). The interactions of the hydroxyl and sulfate oxygen atoms with the Ag(I) ion are weaker (HO···Ag = 2.581 (2) and O2SO···Ag = 2.666 (2) Å) but well within the sum of the Van der Waals radii for silver and oxygen (3.24 Å). The interaction of HEPES with Ag(I) affords a layered two-dimensional network perpendicular to the c axis, and these layers are further associated into a three-dimensional network through hydrogen bonding with the water molecules, directly via water O6, of the structure (Figure 2).

Experimental

A 250 ml 1 M stock solution of HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) buffer was prepared by dissolving 59.57 grams of HEPES in 200 ml of water and adjusting the pH to 7 with 5M NaOH before adjusting the volume to 250 ml. A 250 ml stock solution of 1M silver nitrate was prepared by dissolving 41.96 grams in 250 ml of water. To form the compound, 90 ml of the 1M silver nitrate stock solution was added to 10 ml of the 1M HEPES buffer stock solution to yield final concentrations of 0.9M silver nitrate and 0.1M HEPES in the solution. After one hour the experiment had gone to completion and long gray needle-like crystals were observed.

Refinement

Methylene H atoms were calculated with a C—H distances of 0.99Å and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C). The hydroxyl H atom of the HEPES molecule and the H atoms of the solvent water molecules were found in the difference Fourier map. The first was included as a riding contribution with an O—H distance of 0.84 Å and Uiso(H) = 1.5 Ueq(O) while the others were refined with fixed displacement parameters (Uiso(H) = 1.5 Ueq(O)).

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot depicting the bonding interaction of three HEPES molecules with one silver(I) atom affording a see-saw geometry. Hydrogen atoms and additional symmetry related molecules removed for clarity. Displacement ellipsoids shown at the 50% probability level.

Fig. 2.

Fig. 2.

Packing view down the b axis of the title compound depicting the three-dimensional network created by the specific hydrogen bonding interaction of water molecule O6 with layers of Ag(I)-HEPES.

Crystal data

[Ag(C8H17N2O4S)]·3H2O F(000) = 816
Mr = 399.21 Dx = 1.808 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1601 reflections
a = 11.2811 (19) Å θ = 2.7–21.3°
b = 10.0973 (17) Å µ = 1.55 mm1
c = 12.875 (2) Å T = 100 K
β = 90.910 (3)° Column, colorless
V = 1466.4 (4) Å3 0.25 × 0.10 × 0.07 mm
Z = 4

Data collection

Bruker APEXI CCD diffractometer 2946 independent reflections
Radiation source: fine-focus sealed tube 2446 reflections with I > 2σ(I)
graphite Rint = 0.050
φ and ω scans θmax = 26.3°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker 2001) h = −14→14
Tmin = 0.699, Tmax = 0.900 k = −12→11
11308 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090 H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0356P)2] where P = (Fo2 + 2Fc2)/3
2946 reflections (Δ/σ)max = 0.001
190 parameters Δρmax = 1.58 e Å3
9 restraints Δρmin = −0.73 e Å3

Special details

Experimental. Two A level alerts are generated by cif check: Angle Calc 87.45 (5), Rep 94.22 (9), Dev..135.40 Sigma N2-AG1-O2 Angle Calc 89.17 (5), Rep 87.18 (7), Dev..135.40 Sigma O2-AG1-O4 Both of the reported angles were verified during refinement with SHELXL-97 and can be confirmed by analyzing the resulting cif with Mercury.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Distance and angle restraints were applied to the hydrogen atoms associated with the three solvent water molecules found from the difference Fourier map.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.38547 (2) 0.14705 (2) 0.29401 (2) 0.01471 (11)
S1 0.68653 (8) −0.16901 (8) 0.41427 (7) 0.0135 (2)
O1 0.6794 (2) −0.3109 (2) 0.39089 (19) 0.0177 (6)
O2 0.7190 (2) −0.1418 (2) 0.52171 (19) 0.0189 (6)
O3 0.7607 (2) −0.1011 (3) 0.3391 (2) 0.0196 (6)
O4 0.5744 (2) 0.2274 (2) 0.39058 (19) 0.0175 (6)
H4 0.6437 0.2101 0.3717 0.026*
O5 0.8863 (3) 0.3405 (3) 0.4864 (2) 0.0317 (7)
H5C 0.883 (5) 0.412 (3) 0.452 (3) 0.048*
H5D 0.862 (4) 0.281 (3) 0.444 (3) 0.048*
O6 0.7024 (3) 0.6635 (2) 0.1703 (2) 0.0211 (6)
H6A 0.707 (4) 0.582 (2) 0.158 (3) 0.032*
H6C 0.704 (4) 0.666 (4) 0.2369 (15) 0.032*
O7 0.0771 (3) 0.4128 (3) 0.6131 (2) 0.0321 (7)
H7C 0.027 (3) 0.374 (4) 0.574 (3) 0.048*
H7D 0.143 (2) 0.375 (4) 0.617 (4) 0.048*
N1 0.3695 (2) −0.0753 (3) 0.2742 (2) 0.0123 (6)
N2 0.3799 (3) 0.3721 (3) 0.2809 (2) 0.0142 (7)
C1 0.2842 (3) −0.1321 (3) 0.3490 (3) 0.0139 (7)
H1B 0.3071 −0.1046 0.4203 0.017*
H1A 0.2879 −0.2300 0.3458 0.017*
C2 0.3296 (3) −0.1120 (4) 0.1675 (3) 0.0148 (8)
H2B 0.3345 −0.2093 0.1593 0.018*
H2A 0.3832 −0.0711 0.1166 0.018*
C3 0.2954 (3) 0.4323 (3) 0.3552 (3) 0.0153 (8)
H3B 0.2998 0.5300 0.3503 0.018*
H3A 0.3182 0.4064 0.4269 0.018*
C4 0.3408 (3) 0.4125 (3) 0.1743 (3) 0.0140 (7)
H4A 0.3948 0.3735 0.1228 0.017*
H4B 0.3454 0.5101 0.1681 0.017*
C5 0.4886 (3) −0.1349 (3) 0.2912 (3) 0.0124 (7)
H5B 0.5429 −0.1006 0.2379 0.015*
H5A 0.4826 −0.2321 0.2820 0.015*
C6 0.5408 (3) −0.1060 (4) 0.3980 (3) 0.0144 (8)
H6D 0.4893 −0.1455 0.4512 0.017*
H6B 0.5421 −0.0090 0.4091 0.017*
C7 0.5006 (3) 0.4236 (3) 0.3009 (3) 0.0164 (8)
H7B 0.4966 0.5212 0.3076 0.020*
H7A 0.5504 0.4031 0.2404 0.020*
C8 0.5599 (3) 0.3672 (3) 0.3982 (3) 0.0187 (8)
H8B 0.6384 0.4094 0.4086 0.022*
H8A 0.5111 0.3881 0.4593 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.01836 (18) 0.00864 (16) 0.01706 (17) −0.00008 (10) −0.00190 (12) −0.00012 (11)
S1 0.0165 (5) 0.0111 (4) 0.0130 (4) 0.0014 (3) −0.0011 (4) 0.0000 (3)
O1 0.0216 (14) 0.0125 (12) 0.0190 (14) 0.0033 (10) −0.0010 (12) −0.0018 (11)
O2 0.0219 (15) 0.0213 (14) 0.0133 (13) 0.0004 (11) −0.0053 (11) −0.0043 (11)
O3 0.0214 (15) 0.0181 (13) 0.0194 (14) −0.0005 (11) 0.0043 (12) 0.0007 (11)
O4 0.0177 (13) 0.0118 (13) 0.0228 (14) 0.0004 (10) −0.0014 (11) 0.0000 (11)
O5 0.0340 (18) 0.0341 (18) 0.0270 (17) −0.0089 (14) −0.0016 (15) −0.0027 (13)
O6 0.0262 (16) 0.0168 (14) 0.0203 (14) 0.0012 (11) 0.0016 (13) −0.0001 (12)
O7 0.0300 (18) 0.0325 (18) 0.0334 (18) 0.0154 (14) −0.0098 (14) −0.0091 (14)
N1 0.0110 (16) 0.0115 (15) 0.0142 (16) −0.0011 (11) 0.0006 (12) 0.0015 (12)
N2 0.0151 (17) 0.0123 (15) 0.0151 (16) −0.0013 (11) 0.0008 (13) 0.0031 (12)
C1 0.0163 (19) 0.0119 (18) 0.0134 (18) −0.0016 (14) 0.0006 (15) −0.0001 (14)
C2 0.019 (2) 0.0154 (18) 0.0097 (17) −0.0001 (14) 0.0015 (15) −0.0012 (14)
C3 0.0180 (19) 0.0124 (18) 0.0154 (19) 0.0057 (14) 0.0003 (15) −0.0006 (15)
C4 0.0175 (19) 0.0110 (18) 0.0135 (18) 0.0013 (14) 0.0036 (15) 0.0020 (14)
C5 0.0164 (19) 0.0091 (17) 0.0117 (17) 0.0020 (13) 0.0000 (15) 0.0015 (14)
C6 0.0147 (19) 0.0160 (18) 0.0125 (18) 0.0021 (14) −0.0026 (15) −0.0012 (15)
C7 0.0143 (19) 0.0111 (18) 0.024 (2) −0.0033 (14) 0.0002 (16) 0.0017 (16)
C8 0.019 (2) 0.0133 (19) 0.024 (2) −0.0012 (14) −0.0048 (17) −0.0046 (16)

Geometric parameters (Å, °)

Ag1—N1 2.266 (3) C1—C4ii 1.506 (5)
Ag1—N2 2.280 (3) C1—H1B 0.9900
Ag1—O2i 2.666 (2) C1—H1A 0.9900
Ag1—O4 2.581 (2) C2—C3ii 1.503 (5)
S1—O2 1.452 (3) C2—H2B 0.9900
S1—O3 1.461 (3) C2—H2A 0.9900
S1—O1 1.466 (3) C3—C2iii 1.503 (5)
S1—C6 1.772 (4) C3—H3B 0.9900
O4—C8 1.425 (4) C3—H3A 0.9900
O4—H4 0.8400 C4—C1iii 1.506 (5)
O5—H5C 0.851 (19) C4—H4A 0.9900
O5—H5D 0.855 (18) C4—H4B 0.9900
O6—H6A 0.839 (18) C5—C6 1.515 (5)
O6—H6C 0.858 (18) C5—H5B 0.9900
O7—H7C 0.848 (19) C5—H5A 0.9900
O7—H7D 0.838 (19) C6—H6D 0.9900
N1—C5 1.485 (4) C6—H6B 0.9900
N1—C2 1.486 (4) C7—C8 1.521 (5)
N1—C1 1.486 (4) C7—H7B 0.9900
N2—C7 1.477 (4) C7—H7A 0.9900
N2—C3 1.490 (4) C8—H8B 0.9900
N2—C4 1.492 (4) C8—H8A 0.9900
N1—Ag1—N2 167.73 (11) C3ii—C2—H2A 109.2
N1—Ag1—O2i 92.58 (8) H2B—C2—H2A 107.9
N1—Ag1—O4 115.41 (8) N2—C3—C2iii 111.2 (3)
N2iii—Ag1—O2i 94.22 (9) N2—C3—H3B 109.4
N2—Ag1—O4 75.16 (9) C2iii—C3—H3B 109.4
O2i—Ag1—O4iii 87.18 (7) N2—C3—H3A 109.4
O2—S1—O3 113.85 (16) C2iii—C3—H3A 109.4
O2—S1—O1 113.13 (14) H3B—C3—H3A 108.0
O3—S1—O1 110.65 (15) N2—C4—C1iii 111.3 (3)
O2—S1—C6 105.35 (16) N2—C4—H4A 109.4
O3—S1—C6 107.02 (16) C1iii—C4—H4A 109.4
O1—S1—C6 106.21 (16) N2—C4—H4B 109.4
C8—O4—H4 109.5 C1iii—C4—H4B 109.4
H5C—O5—H5D 105 (4) H4A—C4—H4B 108.0
H6A—O6—H6C 103 (3) N1—C5—C6 113.1 (3)
H7C—O7—H7D 113 (4) N1—C5—H5B 109.0
C5—N1—C2 107.1 (3) C6—C5—H5B 109.0
C5—N1—C1 109.9 (3) N1—C5—H5A 109.0
C2—N1—C1 108.2 (3) C6—C5—H5A 109.0
C5—N1—Ag1 108.4 (2) H5B—C5—H5A 107.8
C2—N1—Ag1 111.9 (2) C5—C6—S1 112.6 (2)
C1—N1—Ag1 111.2 (2) C5—C6—H6D 109.1
C7—N2—C3 110.0 (3) S1—C6—H6D 109.1
C7—N2—C4 108.8 (3) C5—C6—H6B 109.1
C3—N2—C4 107.2 (3) S1—C6—H6B 109.1
C7—N2—Ag1 108.3 (2) H6D—C6—H6B 107.8
C3—N2—Ag1 112.1 (2) N2—C7—C8 113.8 (3)
C4—N2—Ag1 110.4 (2) N2—C7—H7B 108.8
N1—C1—C4ii 111.7 (3) C8—C7—H7B 108.8
N1—C1—H1B 109.3 N2—C7—H7A 108.8
C4ii—C1—H1B 109.3 C8—C7—H7A 108.8
N1—C1—H1A 109.3 H7B—C7—H7A 107.7
C4ii—C1—H1A 109.3 O4—C8—C7 111.4 (3)
H1B—C1—H1A 108.0 O4—C8—H8B 109.4
N1—C2—C3ii 112.0 (3) C7—C8—H8B 109.4
N1—C2—H2B 109.2 O4—C8—H8A 109.4
C3ii—C2—H2B 109.2 C7—C8—H8A 109.4
N1—C2—H2A 109.2 H8B—C8—H8A 108.0
N2—Ag1—N1—C5 130.6 (5) C7—N2—C4—C1iii −177.5 (3)
N2—Ag1—N1—C2 12.7 (6) C3—N2—C4—C1iii −58.5 (4)
N2—Ag1—N1—C1 −108.5 (5) Ag1—N2—C4—C1iii 63.8 (3)
N1—Ag1—N2—C7 −131.4 (5) C2—N1—C5—C6 −179.8 (3)
N1—Ag1—N2—C3 107.1 (5) C1—N1—C5—C6 −62.4 (4)
N1—Ag1—N2—C4 −12.4 (6) Ag1—N1—C5—C6 59.3 (3)
C5—N1—C1—C4ii −172.7 (3) N1—C5—C6—S1 −176.3 (2)
C2—N1—C1—C4ii −56.0 (4) O2—S1—C6—C5 −175.8 (2)
Ag1—N1—C1—C4ii 67.3 (3) O3—S1—C6—C5 62.7 (3)
C5—N1—C2—C3ii 174.6 (3) O1—S1—C6—C5 −55.5 (3)
C1—N1—C2—C3ii 56.1 (4) C3—N2—C7—C8 74.0 (4)
Ag1—N1—C2—C3ii −66.7 (3) C4—N2—C7—C8 −168.8 (3)
C7—N2—C3—C2iii 176.5 (3) Ag1—N2—C7—C8 −48.8 (3)
C4—N2—C3—C2iii 58.4 (4) N2—C7—C8—O4 61.9 (4)
Ag1—N2—C3—C2iii −62.9 (3)

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7C···O5iv 0.85 (2) 1.96 (2) 2.777 (4) 161 (4)
O6—H6A···O3v 0.84 (2) 1.88 (2) 2.706 (4) 166 (4)
O6—H6C···O1vi 0.86 (2) 2.02 (2) 2.868 (4) 169 (4)
O5—H5C···O7vii 0.85 (2) 2.01 (2) 2.834 (4) 163 (5)
O5—H5D···O6viii 0.86 (2) 2.02 (2) 2.864 (4) 171 (4)
O4—H4···O6viii 0.84 1.89 2.726 (4) 178

Symmetry codes: (iv) x−1, y, z; (v) −x+3/2, y+1/2, −z+1/2; (vi) x, y+1, z; (vii) −x+1, −y+1, −z+1; (viii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MW2014).

References

  1. Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Good, N. E., Winget, G. D., Winter, W., Connolly, T. N., Izawa, S. & Singh, R. M. M. (1966). Biochemistry 5, 467–477. [DOI] [PubMed]
  4. Gregory, J. D. & Sajdera, S. W. (1970). Science, 169, 97–98. [DOI] [PubMed]
  5. Jiang, H., Liu, Y., Ma, J., Zhang, W. & Yang, J. (2008). Polyhedron, 27, 2595–2602.
  6. Jiang, H., Ma, J., Zhang, W., Liu, Y., Yang, J., Ping, G. & Su, Z. (2008). Eur. J. Inorg. Chem. pp. 745–755.
  7. Kaushal, V. & Barnes, L. D. (1986). Anal. Biochem. 157, 291–294. [DOI] [PubMed]
  8. Lleu, P. L. & Rebel, G. (1991). Anal. Biochem. 192, 215–218. [DOI] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Soares, H. M. V. M. & Conde, P. C. F. L. (2000). Anal. Chim. Acta, 421, 103–111.
  12. Sokolowska, M. & Bal, W. (2005). J. Inorg. Biochem. 99, 1653–1660. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681103008X/mw2014sup1.cif

e-67-m1178-sup1.cif (19.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103008X/mw2014Isup2.hkl

e-67-m1178-Isup2.hkl (144.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES