Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):o2310. doi: 10.1107/S1600536811030935

3-(4-Chloro­phen­yl)quinazolin-4(3H)-one

M Gnana Ruba Priya a, T Srinivasan b, K Girija c, N Ravi Chandran d, D Velmurugan b,*
PMCID: PMC3200588  PMID: 22058942

Abstract

In the title compound, C14H9ClN2O, the quinazoline unit is essentially planar, with a mean deviation from the least-squares plane defined by the ten constituent ring atoms of 0.027 (2) Å. The dihedral angle between the mean plane of the quinazoline ring system and the 4-chloro­phenyl ring is 44.63 (5)°. In the crystal, mol­ecules are linked by inter­molecular C—H⋯N and C—H⋯O hydrogen bonds, forming infinite chains of alternating R22(6) dimers and R22(14) ring motifs.

Related literature

For the synthesis of the title compound, see: Priya et al. (2011). For related structures, see: Li & Feng (2009); Li et al. (2010). For the biological activity of quinazoline derivatives, see: Wolfe et al. (1990); Tereshima et al. (1995); Pandeya et al. (1999). For graph-set notation see: Bernstein et al. (1995).graphic file with name e-67-o2310-scheme1.jpg

Experimental

Crystal data

  • C14H9ClN2O

  • M r = 256.68

  • Monoclinic, Inline graphic

  • a = 16.9531 (8) Å

  • b = 3.9290 (3) Å

  • c = 17.2740 (8) Å

  • β = 91.626 (3)°

  • V = 1150.14 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008) T min = 0.926, T max = 0.938

  • 11055 measured reflections

  • 2920 independent reflections

  • 1870 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.133

  • S = 1.01

  • 2920 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030935/lx2195sup1.cif

e-67-o2310-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030935/lx2195Isup2.hkl

e-67-o2310-Isup2.hkl (140.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030935/lx2195Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯N1i 0.93 2.47 3.281 (2) 145
C13—H13⋯O1ii 0.93 2.37 3.145 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

TS and DV thank the TBI, X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection and a DST inspire fellowship for financial support

supplementary crystallographic information

Comment

4(3H)-Quinazolinones are an important class of fused heterocycles with a wide range of biological activities such as anti–cancer (Wolfe et al.,1990), anti-inflammatory (Tereshima et al.,1995), anti–HIV (Pandeya et al., 1999). In addition to that, the quinazolinones exibit anti–bacterial and anti–bacterial and anti-fungal activities (Priya et al., 2011).

In title molecule (Fig. 1), the quinazoline unit is essentially planar, with a mean deviation of 0.027 (2) Å from the least–squares plane defined by the ten constituent atoms. The dihedral angle formed by the 4-chlorophenyl ring and the mean plane of the quinazoline fragment is 44.63 (5)°. In the crystal packing (Fig. 2), molecules are linked by intermolecular C—H···N and C—H···O hydrogen bonds (Table 1). These hydrogen bonds are forming infinite chains of alternating R22(6) dimer and R22(14) ring motifs (Bernstein et al., 1995) as shown in Fig. 2.

Experimental

To an ice–cold solution of POCl3 in DMF was added anthranilic acid (0.01458 mole) and stirred for 5–10 min until TLC indicated the disappearance of anthranilic acid. The reaction-mixture was treated with the respective primary aromatic amine (0.01458 mol) and supported on anhydrous sodium sulfate (five times the weight of anthranilic acid) and exposed to microwave (BPL company) irradiation (600 W) for 2–4 min with 30 sec pulse. The reaction-mixture was quenched with water (50 ml) and extracted with ethyl acetate (2x50 ml). The organic layer was dried over anhydrous sodium sulfate, concentrated and purified by silica gel column chromatography (60–20 mesh) using hexane/EtOAc (7.5:2.5) as eluent to yield the pure product. Single crystals suitable for X–ray diffraction were prepared by slow evaporation of a solution of the title compound in methanol at room temperature.

Refinement

Hydrogen atoms were placed in calculated positions with C—H = 0.93 Å and refined in riding model with fixed isotropic displacement parameter: Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing displacement ellipsoids drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···N and C—H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) - x + 1, - y + 2, - z + 1; (ii) - x - 3/2, y + 1/2, - z + 1/2; (iii) - x + 3/2, y - 1/2, - z + 1/2.]

Crystal data

C14H9ClN2O F(000) = 528
Mr = 256.68 Dx = 1.482 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1025 reflections
a = 16.9531 (8) Å θ = 1.7–28.5°
b = 3.9290 (3) Å µ = 0.32 mm1
c = 17.2740 (8) Å T = 293 K
β = 91.626 (3)° Block, colourless
V = 1150.14 (12) Å3 0.24 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker SMART APEXII area-detector diffractometer 2920 independent reflections
Radiation source: fine-focus sealed tube 1870 reflections with I > 2σ(I)
graphite Rint = 0.042
ω and φ scans θmax = 28.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −22→21
Tmin = 0.926, Tmax = 0.938 k = −5→5
11055 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: difference Fourier map
wR(F2) = 0.133 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0705P)2 + 0.0848P] where P = (Fo2 + 2Fc2)/3
2920 reflections (Δ/σ)max = 0.001
163 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.91232 (3) 0.26102 (17) 0.49055 (3) 0.0650 (2)
O1 0.61097 (8) 0.3729 (5) 0.25686 (8) 0.0644 (5)
C1 0.46221 (11) 0.6243 (6) 0.19774 (10) 0.0517 (5)
H1 0.4933 0.5149 0.1619 0.062*
C2 0.38879 (13) 0.7399 (6) 0.17572 (11) 0.0578 (5)
H2 0.3704 0.7118 0.1249 0.069*
C3 0.34179 (12) 0.8996 (6) 0.22962 (12) 0.0575 (5)
H3 0.2916 0.9752 0.2148 0.069*
C4 0.36884 (11) 0.9464 (6) 0.30462 (11) 0.0525 (5)
H4 0.3370 1.0538 0.3402 0.063*
C5 0.44358 (10) 0.8339 (5) 0.32744 (9) 0.0419 (4)
C6 0.49087 (10) 0.6695 (5) 0.27370 (9) 0.0426 (4)
C7 0.54095 (11) 0.7942 (5) 0.42122 (9) 0.0445 (4)
H7 0.5590 0.8353 0.4717 0.053*
C8 0.56863 (10) 0.5452 (5) 0.29697 (9) 0.0448 (4)
C9 0.67020 (10) 0.5459 (5) 0.40206 (8) 0.0405 (4)
C10 0.68006 (10) 0.3971 (5) 0.47428 (9) 0.0455 (4)
H10 0.6363 0.3521 0.5039 0.055*
C11 0.75439 (11) 0.3154 (5) 0.50233 (10) 0.0486 (5)
H11 0.7613 0.2197 0.5513 0.058*
C12 0.81859 (10) 0.3767 (5) 0.45721 (10) 0.0452 (4)
C13 0.80960 (10) 0.5292 (6) 0.38568 (9) 0.0480 (5)
H13 0.8535 0.5725 0.3562 0.058*
C14 0.73563 (10) 0.6173 (5) 0.35806 (9) 0.0452 (4)
H14 0.7293 0.7240 0.3102 0.054*
N1 0.47068 (8) 0.8923 (5) 0.40344 (8) 0.0477 (4)
N2 0.59244 (8) 0.6340 (4) 0.37290 (7) 0.0407 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0495 (3) 0.0838 (5) 0.0615 (3) 0.0035 (3) −0.0001 (2) 0.0062 (3)
O1 0.0570 (8) 0.0892 (13) 0.0473 (7) 0.0129 (8) 0.0066 (6) −0.0291 (7)
C1 0.0586 (11) 0.0583 (14) 0.0383 (9) −0.0053 (10) 0.0062 (8) −0.0070 (8)
C2 0.0656 (12) 0.0634 (15) 0.0440 (10) −0.0081 (10) −0.0057 (9) 0.0006 (9)
C3 0.0517 (11) 0.0605 (15) 0.0602 (11) −0.0006 (10) −0.0027 (9) 0.0063 (10)
C4 0.0504 (10) 0.0526 (14) 0.0550 (10) −0.0007 (9) 0.0110 (8) −0.0012 (9)
C5 0.0440 (9) 0.0444 (12) 0.0377 (8) −0.0070 (7) 0.0090 (7) −0.0022 (7)
C6 0.0484 (9) 0.0436 (12) 0.0362 (8) −0.0077 (8) 0.0083 (7) −0.0036 (7)
C7 0.0466 (9) 0.0546 (13) 0.0329 (8) −0.0053 (8) 0.0117 (7) −0.0093 (7)
C8 0.0485 (10) 0.0515 (13) 0.0349 (8) −0.0036 (8) 0.0095 (7) −0.0097 (8)
C9 0.0447 (9) 0.0437 (12) 0.0334 (8) −0.0052 (8) 0.0085 (6) −0.0051 (7)
C10 0.0477 (10) 0.0545 (13) 0.0349 (8) −0.0097 (8) 0.0131 (7) 0.0009 (8)
C11 0.0542 (11) 0.0560 (14) 0.0359 (8) −0.0071 (9) 0.0062 (7) 0.0047 (8)
C12 0.0441 (9) 0.0493 (12) 0.0424 (9) −0.0026 (8) 0.0050 (7) −0.0003 (8)
C13 0.0453 (10) 0.0566 (14) 0.0428 (9) −0.0072 (9) 0.0138 (7) 0.0022 (8)
C14 0.0513 (10) 0.0506 (12) 0.0343 (8) −0.0054 (8) 0.0109 (7) 0.0021 (8)
N1 0.0475 (8) 0.0582 (11) 0.0378 (7) 0.0000 (7) 0.0116 (6) −0.0109 (7)
N2 0.0419 (7) 0.0492 (10) 0.0315 (6) −0.0021 (6) 0.0088 (5) −0.0074 (6)

Geometric parameters (Å, °)

Cl1—C12 1.7353 (18) C7—N2 1.377 (2)
O1—C8 1.217 (2) C7—H7 0.9300
C1—C2 1.369 (3) C8—N2 1.405 (2)
C1—C6 1.397 (2) C9—C10 1.384 (2)
C1—H1 0.9300 C9—C14 1.391 (2)
C2—C3 1.392 (3) C9—N2 1.440 (2)
C2—H2 0.9300 C10—C11 1.375 (3)
C3—C4 1.374 (3) C10—H10 0.9300
C3—H3 0.9300 C11—C12 1.378 (2)
C4—C5 1.389 (3) C11—H11 0.9300
C4—H4 0.9300 C12—C13 1.378 (3)
C5—N1 1.398 (2) C13—C14 1.373 (3)
C5—C6 1.401 (2) C13—H13 0.9300
C6—C8 1.452 (3) C14—H14 0.9300
C7—N1 1.281 (2)
C2—C1—C6 120.52 (18) N2—C8—C6 114.17 (14)
C2—C1—H1 119.7 C10—C9—C14 120.00 (16)
C6—C1—H1 119.7 C10—C9—N2 120.19 (14)
C1—C2—C3 119.81 (18) C14—C9—N2 119.79 (15)
C1—C2—H2 120.1 C11—C10—C9 120.16 (15)
C3—C2—H2 120.1 C11—C10—H10 119.9
C4—C3—C2 120.59 (19) C9—C10—H10 119.9
C4—C3—H3 119.7 C10—C11—C12 119.38 (16)
C2—C3—H3 119.7 C10—C11—H11 120.3
C3—C4—C5 120.15 (18) C12—C11—H11 120.3
C3—C4—H4 119.9 C13—C12—C11 120.94 (16)
C5—C4—H4 119.9 C13—C12—Cl1 119.24 (13)
C4—C5—N1 119.17 (16) C11—C12—Cl1 119.81 (14)
C4—C5—C6 119.56 (16) C14—C13—C12 119.86 (16)
N1—C5—C6 121.26 (16) C14—C13—H13 120.1
C1—C6—C5 119.36 (17) C12—C13—H13 120.1
C1—C6—C8 120.40 (16) C13—C14—C9 119.60 (16)
C5—C6—C8 120.24 (15) C13—C14—H14 120.2
N1—C7—N2 126.39 (15) C9—C14—H14 120.2
N1—C7—H7 116.8 C7—N1—C5 117.04 (14)
N2—C7—H7 116.8 C7—N2—C8 120.60 (14)
O1—C8—N2 120.72 (16) C7—N2—C9 119.18 (13)
O1—C8—C6 125.10 (15) C8—N2—C9 120.18 (13)
C6—C1—C2—C3 −0.9 (3) C10—C11—C12—Cl1 −177.74 (16)
C1—C2—C3—C4 0.9 (3) C11—C12—C13—C14 −1.0 (3)
C2—C3—C4—C5 −0.1 (3) Cl1—C12—C13—C14 178.99 (16)
C3—C4—C5—N1 178.32 (19) C12—C13—C14—C9 −1.1 (3)
C3—C4—C5—C6 −0.6 (3) C10—C9—C14—C13 2.1 (3)
C2—C1—C6—C5 0.2 (3) N2—C9—C14—C13 −179.22 (18)
C2—C1—C6—C8 179.71 (19) N2—C7—N1—C5 −0.6 (3)
C4—C5—C6—C1 0.6 (3) C4—C5—N1—C7 −177.73 (19)
N1—C5—C6—C1 −178.32 (18) C6—C5—N1—C7 1.2 (3)
C4—C5—C6—C8 −178.96 (18) N1—C7—N2—C8 −3.5 (3)
N1—C5—C6—C8 2.1 (3) N1—C7—N2—C9 178.92 (19)
C1—C6—C8—O1 −6.6 (3) O1—C8—N2—C7 −172.35 (19)
C5—C6—C8—O1 172.9 (2) C6—C8—N2—C7 6.3 (3)
C1—C6—C8—N2 174.76 (17) O1—C8—N2—C9 5.2 (3)
C5—C6—C8—N2 −5.7 (3) C6—C8—N2—C9 −176.13 (16)
C14—C9—C10—C11 −0.8 (3) C10—C9—N2—C7 44.8 (3)
N2—C9—C10—C11 −179.52 (18) C14—C9—N2—C7 −133.95 (19)
C9—C10—C11—C12 −1.4 (3) C10—C9—N2—C8 −132.82 (19)
C10—C11—C12—C13 2.3 (3) C14—C9—N2—C8 48.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H7···N1i 0.93 2.47 3.281 (2) 145
C13—H13···O1ii 0.93 2.37 3.145 (2) 140

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+3/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2195).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.
  2. Bruker (2008). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  4. Li, M.-J. & Feng, C.-J. (2009). Acta Cryst. E65, o2145. [DOI] [PMC free article] [PubMed]
  5. Li, D.-L., Wu, Y., Wang, Q., He, G. & Yu, L.-T. (2010). Acta Cryst. E66, o447. [DOI] [PMC free article] [PubMed]
  6. Pandeya, S. N., Sriram, D., Nath, G. & Declera, E. (1999). Pharmaceutica Acta Helv., 74, 11–17. [DOI] [PubMed]
  7. Priya, M. G. R., Zulykama, Y., Girija, K., Murugesh, S. & Perumal, P. T. (2011). Indian J. Chem. Sect. B, 50, 98–102.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Tereshima, K., Shimamura, H., Kawase, A., Tanaka, Y., Tanimura, T., Ishizuka, Y. & Sato, M. (1995). Chem. Pharm. Bull. 45, 2021–2023. [DOI] [PubMed]
  11. Wolfe, J. F., Rathman, T. L., Sleevi, M. C., Campbell, J. S. A. & Greenwood, T. D. (1990). J. Med. Chem. 33, 161–166. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030935/lx2195sup1.cif

e-67-o2310-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030935/lx2195Isup2.hkl

e-67-o2310-Isup2.hkl (140.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030935/lx2195Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES