Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):o2254. doi: 10.1107/S1600536811030704

2-[(4-Chloro­benzyl­idene)amino]-4,5,6,7-tetra­hydro-1-benzothio­phene-3-carbonitrile

Abdullah M Asiri a,b, Salman A Khan b, M Nawaz Tahir c,*
PMCID: PMC3200595  PMID: 22058913

Abstract

In the title compound, C16H13ClN2S, the dihedral angle between the 4-chloro­benzaldehyde moiety and the heterocyclic five-membered ring is 7.21 (17)°. In the crystal, mol­ecules are linked by weak C—H⋯π inter­actions, generating [100] chains.

Related literature

For a related structure, see: Asiri et al. (2011).graphic file with name e-67-o2254-scheme1.jpg

Experimental

Crystal data

  • C16H13ClN2S

  • M r = 300.79

  • Orthorhombic, Inline graphic

  • a = 4.7815 (3) Å

  • b = 16.5670 (13) Å

  • c = 18.1658 (14) Å

  • V = 1439.01 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.35 × 0.15 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.931, T max = 0.951

  • 11075 measured reflections

  • 2607 independent reflections

  • 1821 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.099

  • S = 1.02

  • 2607 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 1053 Friedel pairs

  • Flack parameter: 0.03 (10)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030704/hb6331sup1.cif

e-67-o2254-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030704/hb6331Isup2.hkl

e-67-o2254-Isup2.hkl (125.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030704/hb6331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C8–C11/S1 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACgi 0.97 2.99 3.841 (6) 147

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the Chemistry Department, King Abdul Aziz University, Jeddah, Saudi Arabia, for providing the research facilities and for the financial support of this work via grant No. (3–045/430).

supplementary crystallographic information

Comment

We have reported the crystal structure of 2-[(benzo[1,3]dioxol-5-ylmethylene)-amino]-4,5,6,7-tetrahydro-benzo[b]thiophene -3-carbonitrile (Asiri et al., 2011) which is related to the title compound, (I), Fig. 1.

In (I), the group A (C1–C7/CL1) of 4-chlorobenzaldehyde and the five membered ring B (C8—C11/S1) of 2-amino-4,5,6,7-tetrahydro-1-benzothiophene-3- carbonitrile group are almost planar with r. m. s. deviation of 0.0150 and 0.0110 Å, respectively. The dihedral angle between A/B is 7.21 (17)°. A C—H···π interaction (Table 1) occurs in the crystal.

Experimental

A mixture of 4-chloro benzaldehyde (0.46 g, 2.4 mmol) and 2-amino-4,5,6,7-tetrahydro-benzo[b]thiophene-carbonitrile (0.32 g, 3.3 mmol) in ethanol (15 ml) was heated for 3 h. The progress of the reaction was monitored by TLC. The solid that separated from the cooled mixture was collected and recrystallized from a methanol-chloroform mixture (8:2) to give yellow needles of the title compound (I). Yield: 82%, m.p. 504–505 K.

Refinement

The H-atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

View of (I) showing 50% displacement ellipsoids.

Crystal data

C16H13ClN2S F(000) = 624
Mr = 300.79 Dx = 1.388 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1821 reflections
a = 4.7815 (3) Å θ = 3.3–25.2°
b = 16.5670 (13) Å µ = 0.40 mm1
c = 18.1658 (14) Å T = 296 K
V = 1439.01 (18) Å3 Needle, yellow
Z = 4 0.35 × 0.15 × 0.12 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2607 independent reflections
Radiation source: fine-focus sealed tube 1821 reflections with I > 2σ(I)
graphite Rint = 0.055
Detector resolution: 8.20 pixels mm-1 θmax = 25.2°, θmin = 3.3°
ω scans h = −5→5
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −19→17
Tmin = 0.931, Tmax = 0.951 l = −21→21
11075 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0416P)2 + 0.1311P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2607 reflections Δρmax = 0.26 e Å3
181 parameters Δρmin = −0.19 e Å3
0 restraints Absolute structure: Flack (1983), 1053 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.03 (10)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.7805 (2) −0.17259 (7) −0.04726 (7) 0.0797 (4)
S1 0.4743 (2) 0.20961 (5) 0.08062 (4) 0.0506 (3)
N1 0.1842 (6) 0.06647 (16) 0.10865 (15) 0.0453 (10)
N2 0.4578 (9) 0.0048 (2) 0.28643 (17) 0.0787 (14)
C1 −0.1473 (7) 0.0110 (2) 0.02527 (17) 0.0406 (11)
C2 −0.2345 (8) −0.0493 (2) 0.07260 (19) 0.0503 (12)
C3 −0.4313 (7) −0.1048 (2) 0.0506 (2) 0.0547 (12)
C4 −0.5384 (7) −0.1013 (2) −0.01982 (19) 0.0513 (12)
C5 −0.4597 (8) −0.0416 (2) −0.06685 (19) 0.0560 (12)
C6 −0.2640 (7) 0.0135 (2) −0.04455 (18) 0.0510 (12)
C7 0.0619 (7) 0.06949 (19) 0.04718 (19) 0.0445 (11)
C8 0.3759 (7) 0.1241 (2) 0.12951 (18) 0.0443 (12)
C9 0.5135 (8) 0.12209 (18) 0.19578 (15) 0.0393 (10)
C10 0.6876 (6) 0.19068 (19) 0.20924 (17) 0.0403 (11)
C11 0.6880 (7) 0.24227 (19) 0.15209 (17) 0.0417 (12)
C12 0.8316 (8) 0.3222 (2) 0.15026 (19) 0.0540 (12)
C13 1.0043 (12) 0.3330 (3) 0.2182 (3) 0.0947 (19)
C14 0.9144 (12) 0.2949 (3) 0.2830 (2) 0.103 (2)
C15 0.8375 (7) 0.2073 (2) 0.27953 (18) 0.0527 (12)
C16 0.4818 (9) 0.0573 (2) 0.24609 (17) 0.0484 (11)
H2 −0.15934 −0.05237 0.11974 0.0602*
H3 −0.49192 −0.14449 0.08309 0.0652*
H5 −0.53781 −0.03830 −0.11363 0.0670*
H6 −0.20794 0.05376 −0.07708 0.0609*
H7 0.10771 0.11083 0.01472 0.0534*
H12A 0.69350 0.36500 0.14716 0.0649*
H12B 0.95053 0.32546 0.10711 0.0649*
H13A 1.19183 0.31404 0.20749 0.1138*
H13B 1.01751 0.39043 0.22811 0.1138*
H14A 0.75291 0.32421 0.30118 0.1240*
H14B 1.06135 0.30081 0.31940 0.1240*
H15A 1.00517 0.17449 0.28231 0.0631*
H15B 0.71853 0.19360 0.32092 0.0631*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0610 (7) 0.0690 (7) 0.1092 (9) −0.0156 (6) −0.0022 (6) −0.0261 (6)
S1 0.0612 (6) 0.0437 (5) 0.0469 (4) −0.0018 (5) −0.0048 (5) 0.0056 (4)
N1 0.0506 (18) 0.0409 (18) 0.0444 (16) 0.0006 (16) −0.0036 (14) −0.0047 (13)
N2 0.105 (3) 0.069 (2) 0.062 (2) −0.014 (2) −0.007 (2) 0.0196 (19)
C1 0.0409 (19) 0.036 (2) 0.045 (2) 0.0070 (17) 0.0009 (15) −0.0040 (16)
C2 0.057 (2) 0.046 (2) 0.048 (2) 0.0009 (19) −0.0022 (19) −0.0042 (18)
C3 0.058 (2) 0.044 (2) 0.062 (2) 0.005 (2) 0.011 (2) 0.0012 (19)
C4 0.040 (2) 0.046 (2) 0.068 (2) 0.002 (2) 0.001 (2) −0.0177 (19)
C5 0.054 (2) 0.060 (2) 0.054 (2) −0.004 (2) −0.009 (2) −0.0066 (19)
C6 0.056 (2) 0.048 (2) 0.049 (2) −0.001 (2) 0.001 (2) 0.0010 (18)
C7 0.050 (2) 0.038 (2) 0.0454 (18) −0.0005 (18) 0.0050 (19) 0.0018 (16)
C8 0.046 (2) 0.040 (2) 0.047 (2) 0.0011 (18) 0.0043 (16) −0.0030 (16)
C9 0.0423 (19) 0.0362 (18) 0.0394 (17) 0.0020 (18) 0.0040 (17) 0.0007 (14)
C10 0.0350 (18) 0.040 (2) 0.0459 (19) 0.0040 (18) 0.0049 (15) −0.0024 (17)
C11 0.040 (2) 0.036 (2) 0.049 (2) 0.0008 (17) 0.0045 (16) −0.0023 (17)
C12 0.056 (2) 0.042 (2) 0.064 (2) −0.001 (2) 0.0060 (19) 0.0011 (18)
C13 0.112 (4) 0.070 (3) 0.102 (3) −0.044 (3) −0.038 (4) 0.007 (3)
C14 0.154 (5) 0.092 (4) 0.064 (3) −0.063 (4) −0.007 (3) −0.012 (3)
C15 0.051 (2) 0.056 (2) 0.051 (2) −0.005 (2) −0.0019 (17) −0.0042 (19)
C16 0.055 (2) 0.050 (2) 0.0403 (18) −0.005 (2) −0.0030 (19) −0.0001 (17)

Geometric parameters (Å, °)

Cl1—C4 1.727 (4) C11—C12 1.492 (5)
S1—C8 1.737 (3) C12—C13 1.496 (7)
S1—C11 1.739 (3) C13—C14 1.403 (7)
N1—C7 1.262 (4) C14—C15 1.499 (6)
N1—C8 1.377 (4) C2—H2 0.9300
N2—C16 1.143 (5) C3—H3 0.9300
C1—C2 1.382 (5) C5—H5 0.9300
C1—C6 1.386 (5) C6—H6 0.9300
C1—C7 1.448 (5) C7—H7 0.9300
C2—C3 1.375 (5) C12—H12A 0.9700
C3—C4 1.379 (5) C12—H12B 0.9700
C4—C5 1.360 (5) C13—H13A 0.9700
C5—C6 1.369 (5) C13—H13B 0.9700
C8—C9 1.372 (4) C14—H14A 0.9700
C9—C10 1.430 (4) C14—H14B 0.9700
C9—C16 1.418 (4) C15—H15A 0.9700
C10—C11 1.345 (4) C15—H15B 0.9700
C10—C15 1.490 (4)
C8—S1—C11 91.79 (15) C1—C2—H2 120.00
C7—N1—C8 121.7 (3) C3—C2—H2 120.00
C2—C1—C6 118.0 (3) C2—C3—H3 120.00
C2—C1—C7 121.4 (3) C4—C3—H3 120.00
C6—C1—C7 120.6 (3) C4—C5—H5 120.00
C1—C2—C3 120.6 (3) C6—C5—H5 120.00
C2—C3—C4 119.7 (3) C1—C6—H6 119.00
Cl1—C4—C3 119.2 (3) C5—C6—H6 119.00
Cl1—C4—C5 120.1 (3) N1—C7—H7 119.00
C3—C4—C5 120.7 (3) C1—C7—H7 119.00
C4—C5—C6 119.2 (3) C11—C12—H12A 110.00
C1—C6—C5 121.7 (3) C11—C12—H12B 110.00
N1—C7—C1 122.5 (3) C13—C12—H12A 110.00
S1—C8—N1 127.3 (2) C13—C12—H12B 110.00
S1—C8—C9 109.8 (2) H12A—C12—H12B 108.00
N1—C8—C9 123.0 (3) C12—C13—H13A 108.00
C8—C9—C10 114.2 (3) C12—C13—H13B 108.00
C8—C9—C16 122.2 (3) C14—C13—H13A 108.00
C10—C9—C16 123.6 (3) C14—C13—H13B 108.00
C9—C10—C11 112.0 (3) H13A—C13—H13B 107.00
C9—C10—C15 125.0 (3) C13—C14—H14A 108.00
C11—C10—C15 122.9 (3) C13—C14—H14B 108.00
S1—C11—C10 112.2 (2) C15—C14—H14A 108.00
S1—C11—C12 122.0 (2) C15—C14—H14B 108.00
C10—C11—C12 125.6 (3) H14A—C14—H14B 107.00
C11—C12—C13 110.0 (3) C10—C15—H15A 110.00
C12—C13—C14 118.0 (5) C10—C15—H15B 110.00
C13—C14—C15 118.4 (4) C14—C15—H15A 110.00
C10—C15—C14 109.5 (3) C14—C15—H15B 110.00
N2—C16—C9 179.5 (4) H15A—C15—H15B 108.00
C11—S1—C8—N1 176.1 (3) S1—C8—C9—C10 2.8 (4)
C11—S1—C8—C9 −2.1 (3) S1—C8—C9—C16 −177.6 (3)
C8—S1—C11—C10 0.8 (3) N1—C8—C9—C10 −175.4 (3)
C8—S1—C11—C12 −174.3 (3) N1—C8—C9—C16 4.2 (5)
C8—N1—C7—C1 −177.9 (3) C8—C9—C10—C11 −2.3 (4)
C7—N1—C8—S1 2.5 (5) C8—C9—C10—C15 173.8 (3)
C7—N1—C8—C9 −179.6 (3) C16—C9—C10—C11 178.1 (3)
C6—C1—C2—C3 −0.1 (5) C16—C9—C10—C15 −5.8 (5)
C7—C1—C2—C3 −179.3 (3) C9—C10—C11—S1 0.6 (4)
C2—C1—C6—C5 0.0 (5) C9—C10—C11—C12 175.6 (3)
C7—C1—C6—C5 179.3 (3) C15—C10—C11—S1 −175.6 (2)
C2—C1—C7—N1 3.4 (5) C15—C10—C11—C12 −0.6 (5)
C6—C1—C7—N1 −175.9 (3) C9—C10—C15—C14 −160.7 (3)
C1—C2—C3—C4 1.4 (5) C11—C10—C15—C14 15.0 (5)
C2—C3—C4—Cl1 178.8 (3) S1—C11—C12—C13 −178.9 (3)
C2—C3—C4—C5 −2.6 (5) C10—C11—C12—C13 6.6 (5)
Cl1—C4—C5—C6 −178.9 (3) C11—C12—C13—C14 −29.9 (6)
C3—C4—C5—C6 2.5 (5) C12—C13—C14—C15 49.0 (7)
C4—C5—C6—C1 −1.2 (5) C13—C14—C15—C10 −38.8 (6)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C8–C11/S1 ring.
D—H···A D—H H···A D···A D—H···A
C13—H13A···Cgi 0.97 2.99 3.841 (6) 147

Symmetry codes: (i) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6331).

References

  1. Asiri, A. M., Khan, S. A. & Tahir, M. N. (2011). Acta Cryst. E67, o2162. [DOI] [PMC free article] [PubMed]
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030704/hb6331sup1.cif

e-67-o2254-sup1.cif (23KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030704/hb6331Isup2.hkl

e-67-o2254-Isup2.hkl (125.4KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030704/hb6331Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES