Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 11;67(Pt 9):m1218–m1219. doi: 10.1107/S1600536811031503

Poly[di-μ-glycinato-copper(II)]: a two-dimensional coordination polymer

Fabienne Gschwind a,*, Martin Jansen a
PMCID: PMC3200596  PMID: 22058852

Abstract

The title coordination polymer, [Cu(C2H4NO2)2]n, is two-dimensional and consists of a distorted octa­hedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the O and N atoms in a trans-square-planar configuration. The two axial coordination sites are occupied by carbonyl O atoms of neighbouring glycine mol­ecules. The Cu—O distances for the axial O atoms [2.648 (2) and 2.837 (2) Å] are considerably longer than both the Cu—O [1.9475 (17) and 1.9483 (18) Å] and Cu—N [1.988 (2) and 1.948 (2) Å] distances in the equatorial plane, which indicates a strong Jahn–Teller effect. In the crystal, the two-dimensional networks are arranged parallel to (001) and are linked via N—H⋯O hydrogen bonds, forming a three-dimensional arrangement.

Related literature

For the first work on cadmium glycinato complexes, see: Low et al. (1959). For similar mixed-metal glycinato complexes with copper(II), see: Papavinasam (1991); Davies et al. (2003); Low et al. (1959); Bi et al. (2006); Zhang et al. (2005). For further studies on cadmium–glycinato complexes, see: Barrie et al. (1993). For the properties and structure of a three-dimensional copper–glycinate polymer, see: Chen et al. (2009). For the synthesis of [NaCu6(gly)3(ClO4)3(H2O)]n(ClO4)2n, see: Aromi et al. (2008). graphic file with name e-67-m1218-scheme1.jpg

Experimental

Crystal data

  • [Cu(C2H4NO2)2]

  • M r = 211.66

  • Monoclinic, Inline graphic

  • a = 9.4265 (19) Å

  • b = 5.1159 (10) Å

  • c = 13.912 (3) Å

  • β = 107.36 (3)°

  • V = 640.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.37 mm−1

  • T = 298 K

  • 0.21 × 0.15 × 0.09 mm

Data collection

  • Stoe IPDS 2 diffractometer

  • Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009) T min = 0.549, T max = 0.692

  • 9012 measured reflections

  • 1876 independent reflections

  • 1561 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.075

  • S = 1.03

  • 1876 reflections

  • 116 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031503/su2280sup1.cif

e-67-m1218-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031503/su2280Isup2.hkl

e-67-m1218-Isup2.hkl (90.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1A⋯O3i 0.94 (5) 2.12 (5) 3.029 (3) 162 (4)
N2—H1B⋯O2ii 0.80 (4) 2.49 (4) 3.223 (3) 154 (4)
N1—H3A⋯O1iii 0.90 (4) 2.17 (4) 2.994 (3) 152 (3)
N1—H3A⋯O1iv 0.90 (4) 2.44 (4) 3.003 (3) 121 (3)
N1—H3B⋯O4v 0.86 (4) 2.41 (4) 3.152 (3) 145 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

FG thanks the Swiss National Science Foundation for financial support.

supplementary crystallographic information

Comment

Different metal glycine complexes and polymeric structures have been known since the 1960's. The first work on a cadmium glycinato complexe was done by (Low et al., 1959), and further studies were reported by (Barrie et al., 1993). Mixed metal glycinato complexes with copper(II) were investigated by (Papavinasam, 1991; Davies et al., 2003; Low et al., 1959).

The complexation of simple copper salts to amino acids is a well investigated reaction and various complexes and clusters have been reported (Low et al., 1959; Davies et al., 2003; Aromi et al., 2008; Bi et al., 2006; Zhang et al., 2005). A three-dimensional copper-glycinate coordination polymer has been reported on by (Chen et al., 2009).

While redissolving the copper cluster [NaCu6(gly)3(ClO4)3(H2O)]n (ClO4)2n (Aromi et al., 2008) in DMSO, blue crystals of the title compound were obtained and were characterized by X-ray diffraction.

The title compound is a two-dimensional coordination polymer (Fig. 1). It consists of a distorted octahedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the oxygen and nitrogen atoms (O1, O3, N1, N2) in a trans square planar configuration. The two axial coordination sites are occupied by carbonyl oxygen atoms of the neighbouring glycine molecules (O2 and O4). The Cu—O distances are 2.648 (2) Å (Cu1—O2i) and 2.837 (2) Å (Cu1—O4ii) for the axial oxygen atoms [symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2]. In the equatorial plane the Cu-O distances are 1.9474 (15) and 1.9483 (16) Å for Cu1—O1 and Cu1—O3, respectively, while the Cu—N distances are 1.9883 (19) and 1.948 (2) Å for Cu1-N1 and Cu1—N2, respectively. These bond length differences indicate a strong Jahn-Teller effect.

In the crystal the two dimensional networks are linked via N-H···O hydrogen bonds to form a three-dimensional arrangement (Table 1 and Fig. 2).

Experimental

The title compound was prepared by dissolving 20 mg of [NaCu6(gly)3(ClO4)3(H2O)]n (ClO4)2n (Aromi et al., 2008) in 5 ml DMSO. Crystals could be grown out of the blue solution by slow diffusion of THF.

Refinement

The NH-atoms were located in difference electron-density maps and were freely refined. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.97 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

Part of the polymeric structure of the title compound, showing the numbering scheme and the displacement ellipsoids drawn at the 50% probability level [H atoms have been omitted for clarity; symmetry codes: (i) -x-1/2, y+1/2, -z+1/2; (ii) -x+1/2, y-1/2, -z+1/2].

Fig. 2.

Fig. 2.

A view along the x-axis of the three-dimensional hydrogen bonded network of the title compound built up from the two-dimenional nets. The N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; H-atoms not involved in these reactions have been omitted for clarity).

Crystal data

[Cu(C2H4NO2)2] F(000) = 428
Mr = 211.66 Dx = 2.195 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5867 reflections
a = 9.4265 (19) Å θ = 2.3–30.5°
b = 5.1159 (10) Å µ = 3.37 mm1
c = 13.912 (3) Å T = 298 K
β = 107.36 (3)° Block, blue
V = 640.4 (2) Å3 0.21 × 0.15 × 0.09 mm
Z = 4

Data collection

Stoe IPDS 2 diffractometer 1876 independent reflections
Radiation source: fine-focus sealed tube 1561 reflections with I > 2σ(I)
graphite Rint = 0.048
Detector resolution: 6.67 pixels mm-1 θmax = 30.0°, θmin = 2.3°
rotation method scans h = −13→13
Absorption correction: integration (X-SHAPE and X-RED; Stoe & Cie, 2009) k = −7→6
Tmin = 0.549, Tmax = 0.692 l = −19→17
9012 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3
1876 reflections (Δ/σ)max = 0.001
116 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 −0.00228 (3) 0.02678 (5) 0.26465 (2) 0.0301 (1)
O1 −0.17587 (17) −0.1989 (3) 0.21922 (12) 0.0270 (4)
O2 −0.3924 (2) −0.2410 (4) 0.10081 (14) 0.0408 (6)
O3 0.17471 (18) 0.2461 (3) 0.30307 (13) 0.0317 (4)
O4 0.41730 (18) 0.2283 (4) 0.38098 (15) 0.0392 (5)
N1 −0.1151 (2) 0.2642 (4) 0.15535 (16) 0.0283 (5)
N2 0.1137 (2) −0.2140 (4) 0.37098 (17) 0.0302 (6)
C1 −0.2742 (2) −0.1247 (4) 0.13882 (17) 0.0260 (6)
C2 −0.2384 (3) 0.1181 (4) 0.08778 (17) 0.0304 (6)
C3 0.2916 (2) 0.1351 (4) 0.36051 (16) 0.0253 (5)
C4 0.2694 (2) −0.1268 (4) 0.40529 (17) 0.0282 (6)
H1A 0.112 (5) −0.378 (10) 0.340 (3) 0.076 (13)*
H1B 0.082 (4) −0.233 (7) 0.418 (3) 0.045 (9)*
H2A −0.21240 0.06770 0.02790 0.0360*
H2B −0.32560 0.22930 0.06700 0.0360*
H3A −0.153 (4) 0.393 (7) 0.184 (2) 0.045 (9)*
H3B −0.061 (4) 0.342 (8) 0.124 (3) 0.061 (11)*
H4A 0.33140 −0.25670 0.38670 0.0340*
H4B 0.30110 −0.11300 0.47810 0.0340*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0249 (1) 0.0214 (1) 0.0380 (2) −0.0026 (1) −0.0001 (1) 0.0078 (1)
O1 0.0262 (7) 0.0191 (7) 0.0334 (8) −0.0016 (5) 0.0052 (6) 0.0030 (6)
O2 0.0375 (9) 0.0391 (10) 0.0389 (10) −0.0142 (7) 0.0010 (7) 0.0043 (7)
O3 0.0277 (7) 0.0216 (7) 0.0408 (9) −0.0028 (6) 0.0028 (6) 0.0046 (6)
O4 0.0275 (8) 0.0350 (9) 0.0510 (11) −0.0060 (7) 0.0057 (7) 0.0016 (8)
N1 0.0274 (9) 0.0214 (8) 0.0340 (10) −0.0019 (7) 0.0062 (7) 0.0055 (7)
N2 0.0291 (9) 0.0253 (9) 0.0331 (11) −0.0023 (7) 0.0046 (8) 0.0068 (8)
C1 0.0282 (10) 0.0234 (9) 0.0262 (10) −0.0011 (7) 0.0080 (8) −0.0020 (8)
C2 0.0351 (11) 0.0263 (10) 0.0264 (11) −0.0053 (8) 0.0041 (8) 0.0017 (8)
C3 0.0267 (9) 0.0238 (9) 0.0246 (10) −0.0018 (7) 0.0066 (8) −0.0025 (7)
C4 0.0279 (10) 0.0272 (10) 0.0272 (11) 0.0017 (8) 0.0049 (8) 0.0043 (8)

Geometric parameters (Å, °)

Cu1—O1 1.9475 (17) N2—C4 1.471 (3)
Cu1—O3 1.9483 (18) N1—H3B 0.86 (4)
Cu1—N1 1.988 (2) N1—H3A 0.90 (4)
Cu1—N2 1.984 (2) N2—H1A 0.94 (5)
Cu1—O2i 2.648 (2) N2—H1B 0.80 (4)
Cu1—O4ii 2.837 (2) C1—C2 1.518 (3)
O1—C1 1.279 (3) C3—C4 1.518 (3)
O2—C1 1.234 (3) C2—H2A 0.9700
O3—C3 1.284 (3) C2—H2B 0.9700
O4—C3 1.229 (3) C4—H4A 0.9700
N1—C2 1.463 (3) C4—H4B 0.9700
O1—Cu1—O3 176.59 (8) H3A—N1—H3B 105 (4)
O1—Cu1—N1 84.73 (8) C4—N2—H1A 107 (3)
O1—Cu1—N2 95.55 (8) Cu1—N2—H1A 106 (3)
O1—Cu1—O2i 92.26 (7) Cu1—N2—H1B 115 (3)
O1—Cu1—O4ii 80.68 (7) C4—N2—H1B 111 (3)
O3—Cu1—N1 94.41 (8) H1A—N2—H1B 108 (4)
O3—Cu1—N2 85.22 (8) O2—C1—C2 119.5 (2)
O2i—Cu1—O3 91.07 (7) O1—C1—O2 123.9 (2)
O3—Cu1—O4ii 96.01 (7) O1—C1—C2 116.60 (19)
N1—Cu1—N2 178.27 (9) N1—C2—C1 111.24 (19)
O2i—Cu1—N1 92.22 (8) O3—C3—O4 124.2 (2)
O4ii—Cu1—N1 89.04 (8) O3—C3—C4 116.60 (18)
O2i—Cu1—N2 89.48 (8) O4—C3—C4 119.3 (2)
O4ii—Cu1—N2 89.32 (8) N2—C4—C3 112.39 (18)
O2i—Cu1—O4ii 172.69 (7) N1—C2—H2A 109.00
Cu1—O1—C1 115.30 (14) N1—C2—H2B 109.00
Cu1iii—O2—C1 113.23 (15) C1—C2—H2A 109.00
Cu1—O3—C3 114.93 (14) C1—C2—H2B 109.00
Cu1iv—O4—C3 120.10 (16) H2A—C2—H2B 108.00
Cu1—N1—C2 108.68 (14) N2—C4—H4A 109.00
Cu1—N2—C4 109.16 (15) N2—C4—H4B 109.00
C2—N1—H3A 108 (2) C3—C4—H4A 109.00
Cu1—N1—H3A 107.6 (18) C3—C4—H4B 109.00
Cu1—N1—H3B 114 (3) H4A—C4—H4B 108.00
C2—N1—H3B 113 (3)
N1—Cu1—O1—C1 6.99 (16) N2—Cu1—O2i—C1i −157.43 (17)
N2—Cu1—O1—C1 −171.29 (16) O1—Cu1—O4ii—C3ii −133.24 (18)
O2i—Cu1—O1—C1 99.01 (15) O3—Cu1—O4ii—C3ii 47.61 (18)
O4ii—Cu1—O1—C1 −82.90 (15) N1—Cu1—O4ii—C3ii 141.95 (18)
N1—Cu1—O3—C3 −166.00 (16) N2—Cu1—O4ii—C3ii −37.51 (18)
N2—Cu1—O3—C3 12.30 (16) Cu1—O1—C1—O2 −178.31 (18)
O2i—Cu1—O3—C3 101.69 (16) Cu1—O1—C1—C2 3.1 (2)
O4ii—Cu1—O3—C3 −76.51 (16) Cu1iii—O2—C1—O1 32.3 (3)
O1—Cu1—N1—C2 −14.98 (16) Cu1iii—O2—C1—C2 −149.11 (17)
O3—Cu1—N1—C2 161.71 (16) Cu1—O3—C3—O4 169.39 (19)
O2i—Cu1—N1—C2 −107.04 (16) Cu1—O3—C3—C4 −11.0 (2)
O4ii—Cu1—N1—C2 65.75 (16) Cu1iv—O4—C3—O3 −34.4 (3)
O1—Cu1—N2—C4 166.43 (15) Cu1iv—O4—C3—C4 146.03 (16)
O3—Cu1—N2—C4 −10.23 (15) Cu1—N1—C2—C1 19.8 (2)
O2i—Cu1—N2—C4 −101.35 (15) Cu1—N2—C4—C3 7.4 (2)
O4ii—Cu1—N2—C4 85.86 (15) O1—C1—C2—N1 −15.8 (3)
O1—Cu1—O2i—C1i −61.90 (17) O2—C1—C2—N1 165.5 (2)
O3—Cu1—O2i—C1i 117.36 (17) O3—C3—C4—N2 2.1 (3)
N1—Cu1—O2i—C1i 22.91 (17) O4—C3—C4—N2 −178.3 (2)

Symmetry codes: (i) −x−1/2, y+1/2, −z+1/2; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x−1/2, y−1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1A···O3v 0.94 (5) 2.12 (5) 3.029 (3) 162 (4)
N2—H1B···O2vi 0.80 (4) 2.49 (4) 3.223 (3) 154 (4)
N1—H3A···O1vii 0.90 (4) 2.17 (4) 2.994 (3) 152 (3)
N1—H3A···O1i 0.90 (4) 2.44 (4) 3.003 (3) 121 (3)
N1—H3B···O4iv 0.86 (4) 2.41 (4) 3.152 (3) 145 (3)

Symmetry codes: (v) x, y−1, z; (vi) x+1/2, −y−1/2, z+1/2; (vii) x, y+1, z; (i) −x−1/2, y+1/2, −z+1/2; (iv) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2280).

References

  1. Aromi, G., Novoa, J. J., Ribas-Arino, J., Igarashi, S. & Yukawa, Y. (2008). Inorg. Chim. Acta, 361, 3919–3925.
  2. Barrie, P. J., Gyani, A., Motevalli, M. & O’Brien, P. (1993). Inorg. Chem. 32, 3862–3867.
  3. Bi, W., Mercier, N., Louvain, N. & Latroche, M. (2006). Eur. J. Inorg. Chem. 21, 4225–4228.
  4. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  5. Chen, P. J., Jiang, C., Yan, W. H., Liang, F. P. & Batten, S. R. (2009). Inorg. Chem. 48, 4674–4684. [DOI] [PubMed]
  6. Davies, O. H., Park, J. H. & Gillard, R. D. (2003). Inorg. Chim. Acta, 356, 69–84.
  7. Low, B. W., Hirshfeld, F. L. & Richard, F. M. (1959). J. Am. Chem. Soc. 36, 4412-4416.
  8. Papavinasam, E. (1991). Z. Kristallogr. 197, 217–222.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Stoe & Cie (2009). X-AREA, X-RED and X-SHAPE Stoe & Cie GmBh, Damstadt, Germany,
  11. Zhang, J. J., Hu, S. M., Xiang, S. C., Wang, L. S. & Wu, X. T. (2005). J. Mol. Struct. 748, 129–136.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536811031503/su2280sup1.cif

e-67-m1218-sup1.cif (16.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811031503/su2280Isup2.hkl

e-67-m1218-Isup2.hkl (90.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES