Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):o2220. doi: 10.1107/S1600536811030339

2-(3,3,4,4-Tetra­fluoro­pyrrolidin-1-yl)aniline

Wanwan Cao a, Jun-wen Zhong a, Jin Wang a, Pei-lian Liu a, Zhuo Zeng a,b,*
PMCID: PMC3200601  PMID: 22058901

Abstract

In the title fluorinated pyrrolidine derivative, C10H10F4N2, the dihedral angle between the best planes of the benzene and pyrrolidine rings is 62.6 (1)°. The crystal packing features inter­molecular N—H⋯F hydrogen bonds.

Related literature

For applications of fluorinated pyrrolidine derivatives, see: Hulin et al. (2005); Kerekes et al. (2011); Marson (2005); Santora et al. (2008).graphic file with name e-67-o2220-scheme1.jpg

Experimental

Crystal data

  • C10H10F4N2

  • M r = 234.20

  • Orthorhombic, Inline graphic

  • a = 6.791 (13) Å

  • b = 8.185 (16) Å

  • c = 18.66 (4) Å

  • V = 1037 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.22 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.959, T max = 0.970

  • 6022 measured reflections

  • 1342 independent reflections

  • 748 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.112

  • S = 1.02

  • 1342 reflections

  • 153 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030339/ld2018sup1.cif

e-67-o2220-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030339/ld2018Isup2.hkl

e-67-o2220-Isup2.hkl (66.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030339/ld2018Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯F1i 0.84 (5) 2.59 (5) 3.295 (8) 142 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge the support of the Department of Science and Technology, Guangdong Province (grant No. 2010 A020507001–76, 5300410, FIPL-05–003).

supplementary crystallographic information

Comment

Fluorinated pyrrolidine derivatives have attracted much attention due to their potential applications as dipeptidyl peptidase IV inhibitors (Hulin et al., 2005), asymmetric synthesis catalysts (Marson, 2005), aurora kinase inhibitors (Kerekes et al., 2011), and H3 receptor antagonists (Santora et al., 2008). Herein, we report the crystal structure of the title compound (Fig. 1), obtained by the reaction of o-phenylenediamine with trifluoromethanesulfonic acid 2,2,3,3-tretrafluoro-1,4-butanediyl ester.

The dihedral angle between the plane of phenyl ring and the least-squares plane of pyrrolidine ring is 62.63 (14)°. The pyrrolidine ring adopts a distorted N1-envelope conformation with folding angle 40.6 (2)°. The crystal packing (Fig. 2) is characterized by intermolecular N—H···F—C bonds linking molecules in zigzag chains along b.

Experimental

A mixture of trifluoromethanesulfonic acid 2,2,3,3,-tretrafluoro-1,4-butanediyl ester(1 mmol), o-phenylenediamine (1.5 mmol), Et3N (3 mmol) and ethanol(15 ml) was placed in a round-bottomed flask fitted with a reflux condenser, and then heated at reflux for 30 h. After cooling, the organic solvent was removed under reduced pressure and to the residue was solved in dichloromethane then washed with water, and the organic layer was dried over anhydrous Na2SO4. After the solvent was removed, the residue was purified by flash chromatography on silica gel to afford a purple solid (164 mg), yield 70%. Crystals suitable for X-ray structural analysis were grown from CH3CN solution at room temperature.

Refinement

H-atoms were placed in calculated positions with C—H = 0.93 Å; the H atoms of amino group were refined freely.

Since this is a light-atom structure (it does not contain any atoms heavier than F) and since the data collection was carried out using Mo radiation, it was not possible to unambiguously determine the absolute configuration of this molecule. In the absence of significant anomalous scattering effects, Friedel pairs have been merged.

Figures

Fig. 1.

Fig. 1.

View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the crystal packing.

Crystal data

C10H10F4N2 F(000) = 480
Mr = 234.20 Dx = 1.500 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
a = 6.791 (13) Å µ = 0.14 mm1
b = 8.185 (16) Å T = 298 K
c = 18.66 (4) Å Block, purple
V = 1037 (3) Å3 0.30 × 0.28 × 0.22 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 1342 independent reflections
Radiation source: fine-focus sealed tube 748 reflections with I > 2σ(I)
graphite Rint = 0.061
φ and ω scans θmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→7
Tmin = 0.959, Tmax = 0.970 k = −8→10
6022 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.038P)2 + 0.0935P] where P = (Fo2 + 2Fc2)/3
1342 reflections (Δ/σ)max < 0.001
153 parameters Δρmax = 0.14 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Since this is a light atom structure (does not contain any atoms heavier than Si) and since the data collection was carried out using Mo radiation, it is not possible to unambiguously determine the absolute configuration of this molecule.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F2 0.5502 (4) 0.9533 (4) 0.28755 (12) 0.0946 (9)
F4 0.9856 (4) 0.9465 (4) 0.22927 (13) 0.0938 (9)
F3 0.7878 (4) 1.1542 (3) 0.23004 (13) 0.0903 (9)
F1 0.7058 (4) 0.7458 (3) 0.24699 (12) 0.0897 (8)
C5 0.5124 (5) 0.9963 (4) 0.04139 (17) 0.0451 (8)
C6 0.3393 (5) 1.0854 (4) 0.02680 (18) 0.0491 (9)
C3 0.8125 (6) 1.0019 (5) 0.2037 (2) 0.0608 (10)
C2 0.6375 (6) 0.8962 (5) 0.22754 (19) 0.0595 (11)
C10 0.6062 (6) 0.9131 (5) −0.01323 (19) 0.0575 (10)
H10 0.7199 0.8541 −0.0031 0.069*
C7 0.2663 (6) 1.0832 (5) −0.0431 (2) 0.0605 (11)
H7 0.1501 1.1383 −0.0536 0.073*
C8 0.3635 (7) 1.0009 (5) −0.0966 (2) 0.0688 (12)
H8 0.3133 1.0027 −0.1430 0.083*
C9 0.5346 (7) 0.9155 (5) −0.0827 (2) 0.0716 (13)
H9 0.6004 0.8608 −0.1192 0.086*
C4 0.7993 (5) 0.9997 (5) 0.12353 (18) 0.0583 (10)
H4A 0.8623 1.0946 0.1025 0.070*
H4B 0.8569 0.9013 0.1036 0.070*
C1 0.5016 (6) 0.8845 (5) 0.16406 (19) 0.0665 (12)
H1A 0.5021 0.7752 0.1440 0.080*
H1B 0.3679 0.9136 0.1771 0.080*
N1 0.5854 (4) 1.0035 (4) 0.11341 (14) 0.0466 (7)
N2 0.2447 (6) 1.1710 (5) 0.0805 (2) 0.0653 (10)
H2A 0.312 (7) 1.201 (6) 0.116 (3) 0.091 (19)*
H2B 0.171 (9) 1.254 (9) 0.068 (3) 0.17 (3)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F2 0.093 (2) 0.123 (2) 0.0670 (14) 0.0049 (17) 0.0166 (15) −0.0149 (14)
F4 0.0610 (15) 0.127 (2) 0.0934 (19) 0.0073 (16) −0.0274 (15) 0.0235 (16)
F3 0.118 (2) 0.0611 (15) 0.0915 (17) −0.0124 (16) −0.0215 (16) −0.0148 (13)
F1 0.111 (2) 0.0665 (15) 0.0915 (17) 0.0003 (16) −0.0187 (16) 0.0234 (14)
C5 0.041 (2) 0.047 (2) 0.0470 (18) −0.0033 (19) −0.0009 (17) 0.0050 (16)
C6 0.047 (2) 0.046 (2) 0.054 (2) −0.0019 (18) −0.0030 (19) 0.0006 (18)
C3 0.056 (3) 0.058 (3) 0.068 (2) 0.007 (2) −0.016 (2) 0.004 (2)
C2 0.069 (3) 0.062 (3) 0.048 (2) 0.006 (2) −0.002 (2) 0.008 (2)
C10 0.058 (2) 0.055 (2) 0.059 (2) 0.004 (2) 0.003 (2) −0.0032 (19)
C7 0.057 (3) 0.061 (2) 0.064 (2) 0.000 (2) −0.016 (2) 0.009 (2)
C8 0.090 (3) 0.069 (3) 0.047 (2) −0.013 (3) −0.013 (2) 0.000 (2)
C9 0.087 (4) 0.069 (3) 0.058 (3) −0.005 (3) 0.005 (2) −0.011 (2)
C4 0.044 (2) 0.070 (3) 0.061 (2) −0.004 (2) −0.0026 (19) 0.010 (2)
C1 0.064 (3) 0.074 (3) 0.061 (2) −0.017 (2) −0.005 (2) 0.017 (2)
N1 0.0369 (16) 0.0548 (18) 0.0480 (16) −0.0026 (15) −0.0024 (14) 0.0073 (15)
N2 0.052 (2) 0.073 (2) 0.071 (2) 0.011 (2) 0.001 (2) −0.004 (2)

Geometric parameters (Å, °)

F2—C2 1.350 (5) C7—C8 1.374 (6)
F4—C3 1.347 (5) C7—H7 0.9300
F3—C3 1.350 (5) C8—C9 1.380 (6)
F1—C2 1.365 (5) C8—H8 0.9300
C5—C10 1.382 (5) C9—H9 0.9300
C5—C6 1.409 (5) C4—N1 1.465 (5)
C5—N1 1.434 (5) C4—H4A 0.9700
C6—N2 1.381 (5) C4—H4B 0.9700
C6—C7 1.395 (5) C1—N1 1.472 (5)
C3—C4 1.498 (6) C1—H1A 0.9700
C3—C2 1.536 (6) C1—H1B 0.9700
C2—C1 1.505 (6) N2—H2A 0.84 (5)
C10—C9 1.384 (6) N2—H2B 0.87 (7)
C10—H10 0.9300
C10—C5—C6 119.8 (3) C7—C8—C9 121.1 (4)
C10—C5—N1 123.5 (3) C7—C8—H8 119.5
C6—C5—N1 116.6 (3) C9—C8—H8 119.5
N2—C6—C7 121.3 (4) C8—C9—C10 118.6 (4)
N2—C6—C5 120.7 (3) C8—C9—H9 120.7
C7—C6—C5 118.1 (3) C10—C9—H9 120.7
F4—C3—F3 106.8 (3) N1—C4—C3 100.8 (3)
F4—C3—C4 113.7 (3) N1—C4—H4A 111.6
F3—C3—C4 111.6 (3) C3—C4—H4A 111.6
F4—C3—C2 112.5 (3) N1—C4—H4B 111.6
F3—C3—C2 108.6 (3) C3—C4—H4B 111.6
C4—C3—C2 103.7 (3) H4A—C4—H4B 109.4
F2—C2—F1 103.9 (3) N1—C1—C2 103.1 (3)
F2—C2—C1 113.9 (4) N1—C1—H1A 111.2
F1—C2—C1 111.1 (3) C2—C1—H1A 111.2
F2—C2—C3 112.7 (4) N1—C1—H1B 111.2
F1—C2—C3 108.8 (3) C2—C1—H1B 111.2
C1—C2—C3 106.4 (3) H1A—C1—H1B 109.1
C5—C10—C9 121.5 (4) C5—N1—C4 117.6 (3)
C5—C10—H10 119.3 C5—N1—C1 116.2 (3)
C9—C10—H10 119.3 C4—N1—C1 106.7 (3)
C8—C7—C6 121.0 (4) C6—N2—H2A 117 (3)
C8—C7—H7 119.5 C6—N2—H2B 118 (4)
C6—C7—H7 119.5 H2A—N2—H2B 107 (5)
C10—C5—C6—N2 −179.2 (4) C6—C7—C8—C9 1.1 (6)
N1—C5—C6—N2 −1.6 (5) C7—C8—C9—C10 0.6 (6)
C10—C5—C6—C7 1.3 (5) C5—C10—C9—C8 −1.3 (6)
N1—C5—C6—C7 178.9 (3) F4—C3—C4—N1 159.5 (3)
F4—C3—C2—F2 93.9 (4) F3—C3—C4—N1 −79.6 (4)
F3—C3—C2—F2 −24.1 (4) C2—C3—C4—N1 37.0 (4)
C4—C3—C2—F2 −142.8 (3) F2—C2—C1—N1 115.4 (4)
F4—C3—C2—F1 −20.8 (4) F1—C2—C1—N1 −127.7 (4)
F3—C3—C2—F1 −138.8 (3) C3—C2—C1—N1 −9.4 (4)
C4—C3—C2—F1 102.5 (3) C10—C5—N1—C4 31.8 (5)
F4—C3—C2—C1 −140.6 (4) C6—C5—N1—C4 −145.8 (4)
F3—C3—C2—C1 101.4 (4) C10—C5—N1—C1 −96.3 (4)
C4—C3—C2—C1 −17.3 (4) C6—C5—N1—C1 86.2 (4)
C6—C5—C10—C9 0.3 (5) C3—C4—N1—C5 −177.7 (3)
N1—C5—C10—C9 −177.1 (4) C3—C4—N1—C1 −45.2 (4)
N2—C6—C7—C8 178.5 (4) C2—C1—N1—C5 167.3 (3)
C5—C6—C7—C8 −2.0 (6) C2—C1—N1—C4 34.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···F1i 0.84 (5) 2.59 (5) 3.295 (8) 142 (4)

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2018).

References

  1. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hulin, B., Cabral, S., Lopaze, M. G., Van Volkenburg, M. A., Andrews, K. M. & Parker, J. C. (2005). Bioorg. Med. Chem. Lett. 15, 4770–4773. [DOI] [PubMed]
  3. Kerekes, A. D., Esposite, S. J., Doll, R. J., Tagat, J. R., Yu, T., Xiao, Y. S., Zhang, Y. L., Prelusky, D. B., Tevar, S., Gray, K., Terracina, G. A., Lee, S. N., Jones, J., Liu, M., Basso, A. D. & Smith, E. B. (2011). J. Med. Chem. 54, 201–210. [DOI] [PubMed]
  4. Marson, C. M. (2005). J. Org. Chem. 70, 9771–9779. [DOI] [PubMed]
  5. Santora, V. J., Covel, J. A., Hayashi, R., Hofilena, B. J., Ibarra, J. B., Pulley, M. D., Weinhouse, M. I., Sengupta, D., Duffield, J. J., Semple, G., Webb, R. R., Sage, C., Ren, A., Pereira, G., Knudsen, J., Edwards, J. E., Suarez, M., Frazer, J., Thomsen, W., Hauser, E., Whelan, K. & Grottick, A. J. (2008). Bioorg. Med. Chem. Lett. 18, 1490–1494. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030339/ld2018sup1.cif

e-67-o2220-sup1.cif (16.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030339/ld2018Isup2.hkl

e-67-o2220-Isup2.hkl (66.3KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030339/ld2018Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES