Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 6;67(Pt 9):o2255. doi: 10.1107/S1600536811030868

5-(4-Bromo-2-nitro­phen­yl)-1,3,4-thia­diazol-2-amine

Jian-qiang Zhang a, Qiu He a, Qianghua Jiang a, Haipin Mu a, Rong Wan a,*
PMCID: PMC3200604  PMID: 22058914

Abstract

The title compound, C8H5BrN4O2S, was synthesized by the reaction of 4-bromo-2-nitro­benzoic acid with thio­semi­carbazide. The dihedral angle between the thia­diazole and benzene rings is 40.5 (2)°. In the crystal, the strongest N—H⋯N inter­molecular hydrogen bond, between the amine group and one thia­diazole N atom, forms centrosymmetric dimers. The other amine H atom extends the supra­molecular network, forming an N—H⋯N contact with the other thia­diazole N atom.

Related literature

For the biological activity of 1,3,4-thia­diazole derivatives, see: Nakagawa et al. (1996); Wang et al. (1999).graphic file with name e-67-o2255-scheme1.jpg

Experimental

Crystal data

  • C8H5BrN4O2S

  • M r = 301.13

  • Monoclinic, Inline graphic

  • a = 11.231 (2) Å

  • b = 9.2580 (19) Å

  • c = 10.868 (2) Å

  • β = 113.08 (3)°

  • V = 1039.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.14 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.491, T max = 0.682

  • 3909 measured reflections

  • 1920 independent reflections

  • 1409 reflections with I > 2σ(I)

  • R int = 0.116

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.104

  • S = 1.01

  • 1920 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030868/bh2371sup1.cif

e-67-o2255-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030868/bh2371Isup2.hkl

e-67-o2255-Isup2.hkl (94.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030868/bh2371Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4B⋯N3i 0.79 (7) 2.25 (7) 3.014 (6) 165 (7)
N4—H4C⋯N2ii 0.80 (6) 2.34 (6) 3.103 (6) 161 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Hua-qin Wang of the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing a broad spectrum of biological activities (Nakagawa et al., 1996). These compounds are known to exhibit diverse biological activities, such as insecticidal and fungicidal activities (Wang et al., 1999). Here we report the crystal structure of the title compound, a new thiadiazole. In the molecular structure (Fig. 1) the bond lengths and angles are within normal ranges. Thiadiazole ring C8/S/C7/N2/N3 is planar, and the mean deviation from the plane is 0.0046 Å. The dihedral angle between the thiadiazole and benzene rings is 40.5 (2)°. In the crystal structure, the strongest N—H···N intermolecular contact (first entry in the hydrogen bonds Table) forms centrosymmetric dimers in the crystal (top molecules in Fig. 2). This pattern is the primary supramolecular structure for this compound. The other hydrogen bond (entry 2) is comparatively weak, and extends the primary pattern to a three-dimensional network, which may be effective in the stabilization of the crystal structure.

Experimental

4-Bromo-2-nitrobenzoic acid (2 mmol) and thiosemicarbazide (5 mmol) were mixed in a 25 ml flask, and kept in the oil bath at 90 °C for 6 h. After cooling, the crude product precipitated and was filtered. Pure compound was obtained by crystallization from ethanol (20 ml). Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms bonded to the C atoms were placed geometrically at the distances of 0.93 Å and included in the refinement in riding motion approximation with Uiso(H) = 1.2Ueq(carrier C atom). Amine H atoms H4B and H4C were found in a difference map and refined freely, with Uiso(H) = 1.2Ueq(N4).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Partial packing view showing the hydrogen bonds network. Dashed lines indicate intermolecular N—H···N hydrogen bonds.

Crystal data

C8H5BrN4O2S F(000) = 592
Mr = 301.13 Dx = 1.924 Mg m3
Monoclinic, P21/c Melting point: 506 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.231 (2) Å Cell parameters from 25 reflections
b = 9.2580 (19) Å θ = 10–13°
c = 10.868 (2) Å µ = 4.14 mm1
β = 113.08 (3)° T = 293 K
V = 1039.6 (4) Å3 Block, yellow
Z = 4 0.20 × 0.10 × 0.10 mm

Data collection

Enraf–Nonius CAD-4 diffractometer 1409 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.116
graphite θmax = 25.4°, θmin = 2.0°
ω/2θ scans h = −13→12
Absorption correction: ψ scan (North et al., 1968) k = −11→11
Tmin = 0.491, Tmax = 0.682 l = 0→13
3909 measured reflections 3 standard reflections every 200 reflections
1920 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
1920 reflections Δρmax = 0.55 e Å3
152 parameters Δρmin = −0.97 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraints Extinction coefficient: 0.0114 (8)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br 0.11486 (5) 0.01063 (5) 0.19612 (6) 0.0512 (2)
S 0.34305 (13) 0.66328 (12) 0.58298 (11) 0.0389 (3)
C1 0.2933 (5) 0.3456 (5) 0.4493 (4) 0.0398 (11)
H1A 0.3437 0.3551 0.5402 0.048*
N1 0.1367 (4) 0.5710 (4) 0.1441 (4) 0.0370 (9)
O1 0.1374 (4) 0.5588 (4) 0.0330 (3) 0.0585 (10)
O2 0.0937 (3) 0.6740 (3) 0.1818 (3) 0.0517 (10)
N2 0.3728 (4) 0.6948 (4) 0.3620 (3) 0.0357 (9)
C2 0.2492 (5) 0.2112 (5) 0.3991 (5) 0.0418 (12)
H2B 0.2717 0.1308 0.4549 0.050*
N3 0.4262 (4) 0.8176 (4) 0.4373 (3) 0.0339 (9)
C3 0.1724 (4) 0.1958 (4) 0.2670 (5) 0.0360 (10)
C4 0.1413 (5) 0.3137 (5) 0.1816 (4) 0.0339 (11)
H4A 0.0920 0.3029 0.0907 0.041*
N4 0.4674 (5) 0.9189 (5) 0.6472 (4) 0.0460 (12)
H4B 0.486 (6) 0.996 (7) 0.630 (6) 0.055*
H4C 0.446 (5) 0.910 (6) 0.709 (6) 0.055*
C5 0.1853 (4) 0.4459 (5) 0.2350 (4) 0.0331 (10)
C6 0.2654 (4) 0.4671 (4) 0.3696 (4) 0.0283 (9)
C7 0.3245 (4) 0.6062 (5) 0.4235 (4) 0.0303 (9)
C8 0.4186 (4) 0.8148 (4) 0.5534 (4) 0.0318 (10)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br 0.0612 (3) 0.0292 (3) 0.0646 (4) −0.0078 (3) 0.0262 (3) −0.0142 (2)
S 0.0593 (7) 0.0333 (6) 0.0300 (5) −0.0143 (6) 0.0240 (5) −0.0042 (5)
C1 0.045 (3) 0.037 (2) 0.031 (2) 0.001 (2) 0.008 (2) 0.000 (2)
N1 0.037 (2) 0.036 (2) 0.031 (2) 0.001 (2) 0.0059 (17) 0.0040 (17)
O1 0.073 (2) 0.056 (2) 0.0359 (18) −0.001 (2) 0.0100 (17) 0.0107 (18)
O2 0.060 (2) 0.0277 (16) 0.057 (2) 0.0082 (18) 0.0115 (19) 0.0035 (16)
N2 0.047 (2) 0.0326 (17) 0.0289 (18) −0.010 (2) 0.0163 (17) −0.0061 (16)
C2 0.046 (3) 0.026 (2) 0.044 (3) −0.003 (2) 0.008 (2) 0.005 (2)
N3 0.045 (2) 0.0318 (18) 0.0267 (18) −0.0118 (19) 0.0163 (17) −0.0039 (15)
C3 0.034 (2) 0.0213 (18) 0.053 (3) −0.005 (2) 0.017 (2) −0.009 (2)
C4 0.039 (3) 0.031 (2) 0.028 (2) −0.002 (2) 0.0086 (19) −0.0053 (18)
N4 0.076 (3) 0.036 (2) 0.033 (2) −0.023 (2) 0.028 (2) −0.0124 (19)
C5 0.034 (2) 0.0246 (18) 0.035 (2) −0.001 (2) 0.007 (2) −0.0030 (19)
C6 0.034 (2) 0.0274 (19) 0.0261 (19) −0.005 (2) 0.0140 (17) −0.0026 (17)
C7 0.034 (2) 0.031 (2) 0.028 (2) −0.004 (2) 0.0140 (19) −0.0012 (18)
C8 0.035 (2) 0.027 (2) 0.031 (2) −0.007 (2) 0.0109 (19) −0.0013 (18)

Geometric parameters (Å, °)

Br—C3 1.887 (4) C2—C3 1.362 (7)
S—C8 1.734 (4) C2—H2B 0.9300
S—C7 1.744 (4) N3—C8 1.297 (5)
C1—C2 1.371 (6) C3—C4 1.386 (6)
C1—C6 1.379 (6) C4—C5 1.361 (6)
C1—H1A 0.9300 C4—H4A 0.9300
N1—O2 1.210 (5) N4—C8 1.353 (6)
N1—O1 1.215 (5) N4—H4B 0.79 (6)
N1—C5 1.481 (6) N4—H4C 0.81 (6)
N2—C7 1.303 (5) C5—C6 1.399 (6)
N2—N3 1.392 (4) C6—C7 1.462 (6)
C8—S—C7 86.4 (2) C3—C4—H4A 121.0
C2—C1—C6 122.2 (4) C8—N4—H4B 122 (4)
C2—C1—H1A 118.9 C8—N4—H4C 113 (4)
C6—C1—H1A 118.9 H4B—N4—H4C 119 (6)
O2—N1—O1 124.7 (4) C4—C5—C6 123.3 (4)
O2—N1—C5 118.8 (4) C4—C5—N1 116.2 (3)
O1—N1—C5 116.4 (4) C6—C5—N1 120.4 (4)
C7—N2—N3 112.4 (3) C1—C6—C5 115.9 (4)
C3—C2—C1 119.7 (4) C1—C6—C7 120.7 (3)
C3—C2—H2B 120.2 C5—C6—C7 123.2 (4)
C1—C2—H2B 120.2 N2—C7—C6 124.3 (4)
C8—N3—N2 112.3 (3) N2—C7—S 114.1 (3)
C2—C3—C4 120.8 (4) C6—C7—S 121.6 (3)
C2—C3—Br 119.9 (3) N3—C8—N4 123.8 (4)
C4—C3—Br 119.1 (3) N3—C8—S 114.8 (3)
C5—C4—C3 118.0 (4) N4—C8—S 121.3 (3)
C5—C4—H4A 121.0
C6—C1—C2—C3 −1.8 (8) N1—C5—C6—C1 172.8 (4)
C7—N2—N3—C8 1.5 (5) C4—C5—C6—C7 172.7 (5)
C1—C2—C3—C4 2.1 (8) N1—C5—C6—C7 −11.3 (7)
C1—C2—C3—Br 178.4 (4) N3—N2—C7—C6 −178.4 (4)
C2—C3—C4—C5 −2.8 (7) N3—N2—C7—S −1.3 (5)
Br—C3—C4—C5 −179.2 (4) C1—C6—C7—N2 135.9 (5)
C3—C4—C5—C6 3.5 (8) C5—C6—C7—N2 −39.8 (7)
C3—C4—C5—N1 −172.6 (4) C1—C6—C7—S −40.9 (6)
O2—N1—C5—C4 130.8 (5) C5—C6—C7—S 143.4 (4)
O1—N1—C5—C4 −45.7 (6) C8—S—C7—N2 0.7 (4)
O2—N1—C5—C6 −45.5 (6) C8—S—C7—C6 177.8 (4)
O1—N1—C5—C6 138.1 (5) N2—N3—C8—N4 177.6 (4)
C2—C1—C6—C5 2.3 (7) N2—N3—C8—S −1.0 (5)
C2—C1—C6—C7 −173.7 (5) C7—S—C8—N3 0.2 (4)
C4—C5—C6—C1 −3.1 (7) C7—S—C8—N4 −178.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4B···N3i 0.79 (7) 2.25 (7) 3.014 (6) 165 (7)
N4—H4C···N2ii 0.80 (6) 2.34 (6) 3.103 (6) 161 (6)

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2371).

References

  1. Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T., Kurihara, N. & Fujita, T. (1996). J. Pesticide Sci 21, 195–201.
  4. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ 20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536811030868/bh2371sup1.cif

e-67-o2255-sup1.cif (14.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536811030868/bh2371Isup2.hkl

e-67-o2255-Isup2.hkl (94.5KB, hkl)

Supplementary material file. DOI: 10.1107/S1600536811030868/bh2371Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES