Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2011 Aug 2;67(Pt 9):o2242. doi: 10.1107/S160053681103056X

5-(4-Fluoro­phen­yl)-2-methyl-3-methyl­sulfinyl-1-benzofuran

Pil Ja Seo a, Hong Dae Choi a, Byeng Wha Son b, Uk Lee b,*
PMCID: PMC3200607  PMID: 22065410

Abstract

In the title compound, C16H13FO2S, the 4-fluoro­phenyl ring makes a dihedral angle of 38.75 (8)° with the mean plane of the benzofuran fragment. In the crystal, mol­ecules are linked by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2009); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For structural studies of related 5-aryl-2-methyl-3-methyl­sulfinyl-1-benzofuran drivatives, see: Choi et al. (2006, 2009). For the synthesis of 2-methyl­benzofuran derivatives, see: Choi et al. (1999).graphic file with name e-67-o2242-scheme1.jpg

Experimental

Crystal data

  • C16H13FO2S

  • M r = 288.32

  • Monoclinic, Inline graphic

  • a = 15.101 (5) Å

  • b = 5.3150 (16) Å

  • c = 17.317 (5) Å

  • β = 93.606 (5)°

  • V = 1387.1 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.24 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.21 mm

Data collection

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.934, T max = 0.952

  • 13601 measured reflections

  • 3478 independent reflections

  • 2437 reflections with I > 2σ(I)

  • R int = 0.055

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.137

  • S = 1.05

  • 3478 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103056X/qk2019sup1.cif

e-67-o2242-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103056X/qk2019Isup2.hkl

e-67-o2242-Isup2.hkl (170.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103056X/qk2019Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.95 2.36 3.245 (3) 156
C16—H16B⋯O2ii 0.98 2.43 3.319 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Recently, many compounds having a benzofuran moiety have drawn much attention owing to their valuable pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, and antimicrobial activities (Aslam et al., 2009, Galal et al., 2009, Khan et al., 2005). These benzofuran derivatives occur in a wide range of natural products (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the substituent effect on the solid state structures of 5-aryl-2-methyl-3-methylsulfinyl-1-benzofuran analogues, see: Choi et al. (2006, 2009), we report herein the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The diheral angle formed by the 4-fluorophenyl ring and the mean plane of the benzofurn fragment is 38.75 (8)°. In the crystal packing (Fig. 2), molecules are linked by weak intermolecular C—H···O hydrogen bonds; the first one between a benzene H atom and the O atom of the sulfinyl group (Table 1; C5—H5···O2i), the second one between a methyl H atom of the methylsulfinyl group and the O atom of the sulfinyl group (Table 1; C16—H16B···O2ii).

Experimental

5-(4-Fluorophenyl)-2-methyl-3-methylsulfanyl-1-benzofuran was obtained from 4'-fluoro-1,1'-biphenyl-4-ol and α-chloro-α-(methylsufanyl)acetone (Choi et al., 1999). 77% 3-chloroperoxybenzoic acid (291 mg, 1.3 mmol) was added in small portions to a stirred solution of 5-(4-fluorophenyl)-2-methyl-3-methylsulfanyl-1-benzofuran (326 mg, 1.2 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 411–413 K; Rf = 0.46 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms. Uiso(H) = 1.2Ueq(C) for aryl and 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) x, - y + 1/2, z + 1/2; (ii) x, y + 1, z; (iii) x, - y +1/2 , z - 1/2; (iv) x, y - 1, z.]

Crystal data

C16H13FO2S F(000) = 600
Mr = 288.32 Dx = 1.381 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2591 reflections
a = 15.101 (5) Å θ = 2.6–26.4°
b = 5.3150 (16) Å µ = 0.24 mm1
c = 17.317 (5) Å T = 173 K
β = 93.606 (5)° Block, colourless
V = 1387.1 (7) Å3 0.28 × 0.22 × 0.21 mm
Z = 4

Data collection

Bruker SMART APEXII CCD diffractometer 3478 independent reflections
Radiation source: rotating anode 2437 reflections with I > 2σ(I)
graphite multilayer Rint = 0.055
Detector resolution: 10.0 pixels mm-1 θmax = 28.5°, θmin = 1.4°
φ and ω scans h = −20→20
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −6→7
Tmin = 0.934, Tmax = 0.952 l = −22→22
13601 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: difference Fourier map
wR(F2) = 0.137 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0651P)2 + 0.2344P] where P = (Fo2 + 2Fc2)/3
3478 reflections (Δ/σ)max < 0.001
183 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.17563 (4) 0.58042 (10) 0.28834 (3) 0.04103 (18)
F1 0.55934 (10) −0.3181 (3) 0.63856 (9) 0.0799 (5)
O1 0.06789 (11) 0.7798 (3) 0.47995 (8) 0.0601 (5)
O2 0.19330 (12) 0.3052 (3) 0.28237 (8) 0.0577 (5)
C1 0.14479 (13) 0.6338 (4) 0.38282 (10) 0.0361 (4)
C2 0.18189 (13) 0.5179 (4) 0.45385 (10) 0.0348 (4)
C3 0.25025 (13) 0.3517 (3) 0.47389 (10) 0.0324 (4)
H3 0.2843 0.2794 0.4353 0.039*
C4 0.26806 (13) 0.2925 (4) 0.55191 (10) 0.0348 (4)
C5 0.21503 (16) 0.3959 (4) 0.60763 (11) 0.0509 (6)
H5 0.2269 0.3515 0.6604 0.061*
C6 0.14668 (18) 0.5585 (5) 0.58852 (12) 0.0615 (7)
H6 0.1112 0.6273 0.6267 0.074*
C7 0.13179 (15) 0.6176 (4) 0.51116 (12) 0.0490 (6)
C8 0.07767 (15) 0.7839 (4) 0.40150 (11) 0.0472 (5)
C9 0.34346 (13) 0.1263 (4) 0.57592 (10) 0.0337 (4)
C10 0.36519 (15) −0.0773 (4) 0.53163 (13) 0.0471 (5)
H10 0.3298 −0.1145 0.4858 0.056*
C11 0.43708 (18) −0.2285 (5) 0.55224 (15) 0.0636 (7)
H11 0.4510 −0.3696 0.5216 0.076*
C12 0.48785 (15) −0.1697 (5) 0.61814 (13) 0.0506 (6)
C13 0.46903 (15) 0.0255 (5) 0.66434 (13) 0.0518 (6)
H13 0.5048 0.0598 0.7102 0.062*
C14 0.39641 (16) 0.1737 (4) 0.64317 (12) 0.0499 (6)
H14 0.3822 0.3112 0.6752 0.060*
C15 0.01636 (16) 0.9524 (5) 0.35532 (14) 0.0584 (7)
H15A 0.0304 1.1280 0.3682 0.088*
H15B −0.0449 0.9162 0.3672 0.088*
H15C 0.0231 0.9241 0.3001 0.088*
C16 0.28109 (15) 0.7332 (4) 0.29579 (13) 0.0502 (5)
H16A 0.3181 0.6581 0.3382 0.075*
H16B 0.2729 0.9127 0.3061 0.075*
H16C 0.3102 0.7128 0.2472 0.075*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0546 (3) 0.0466 (3) 0.0211 (2) 0.0092 (2) −0.00313 (19) −0.0005 (2)
F1 0.0614 (9) 0.1015 (12) 0.0772 (11) 0.0432 (9) 0.0076 (8) 0.0292 (9)
O1 0.0642 (10) 0.0827 (12) 0.0348 (8) 0.0421 (9) 0.0126 (7) 0.0095 (8)
O2 0.0964 (13) 0.0440 (9) 0.0328 (8) 0.0079 (8) 0.0051 (8) −0.0095 (6)
C1 0.0391 (10) 0.0436 (11) 0.0250 (9) 0.0089 (8) −0.0030 (7) 0.0015 (8)
C2 0.0405 (10) 0.0402 (10) 0.0236 (9) 0.0068 (8) 0.0020 (7) −0.0002 (8)
C3 0.0397 (10) 0.0355 (9) 0.0221 (8) 0.0055 (8) 0.0030 (7) −0.0021 (7)
C4 0.0414 (11) 0.0377 (10) 0.0255 (9) 0.0067 (8) 0.0030 (8) 0.0034 (8)
C5 0.0663 (15) 0.0639 (14) 0.0234 (9) 0.0235 (12) 0.0089 (9) 0.0072 (9)
C6 0.0748 (17) 0.0814 (18) 0.0303 (11) 0.0408 (14) 0.0184 (11) 0.0079 (11)
C7 0.0547 (13) 0.0611 (14) 0.0318 (10) 0.0276 (11) 0.0077 (9) 0.0044 (9)
C8 0.0509 (13) 0.0587 (14) 0.0317 (10) 0.0169 (11) 0.0019 (9) 0.0042 (9)
C9 0.0413 (10) 0.0338 (9) 0.0263 (9) 0.0012 (8) 0.0033 (7) 0.0064 (7)
C10 0.0562 (13) 0.0401 (11) 0.0437 (12) 0.0099 (10) −0.0058 (10) −0.0051 (9)
C11 0.0757 (18) 0.0549 (15) 0.0602 (15) 0.0304 (13) 0.0033 (13) −0.0061 (12)
C12 0.0417 (12) 0.0598 (14) 0.0506 (13) 0.0160 (10) 0.0065 (10) 0.0224 (11)
C13 0.0521 (13) 0.0600 (14) 0.0416 (12) 0.0059 (11) −0.0100 (10) 0.0124 (11)
C14 0.0655 (15) 0.0508 (12) 0.0319 (11) 0.0152 (11) −0.0088 (10) 0.0006 (9)
C15 0.0558 (14) 0.0726 (17) 0.0465 (13) 0.0303 (13) 0.0010 (11) 0.0111 (11)
C16 0.0527 (13) 0.0530 (13) 0.0458 (12) 0.0110 (11) 0.0107 (10) 0.0078 (10)

Geometric parameters (Å, °)

S1—O2 1.4915 (17) C8—C15 1.485 (3)
S1—C1 1.752 (2) C9—C10 1.378 (3)
S1—C16 1.785 (2) C9—C14 1.393 (3)
F1—C12 1.365 (2) C10—C11 1.380 (3)
O1—C8 1.376 (2) C10—H10 0.9500
O1—C7 1.379 (2) C11—C12 1.370 (3)
C1—C8 1.345 (3) C11—H11 0.9500
C1—C2 1.456 (2) C12—C13 1.351 (3)
C2—C3 1.386 (3) C13—C14 1.381 (3)
C2—C7 1.390 (3) C13—H13 0.9500
C3—C4 1.397 (2) C14—H14 0.9500
C3—H3 0.9500 C15—H15A 0.9800
C4—C5 1.404 (3) C15—H15B 0.9800
C4—C9 1.480 (3) C15—H15C 0.9800
C5—C6 1.371 (3) C16—H16A 0.9800
C5—H5 0.9500 C16—H16B 0.9800
C6—C7 1.380 (3) C16—H16C 0.9800
C6—H6 0.9500
O2—S1—C1 106.43 (9) C10—C9—C4 121.22 (17)
O2—S1—C16 106.77 (11) C14—C9—C4 121.19 (18)
C1—S1—C16 98.46 (10) C9—C10—C11 121.6 (2)
C8—O1—C7 106.32 (15) C9—C10—H10 119.2
C8—C1—C2 107.68 (17) C11—C10—H10 119.2
C8—C1—S1 124.69 (15) C12—C11—C10 118.2 (2)
C2—C1—S1 127.56 (15) C12—C11—H11 120.9
C3—C2—C7 119.61 (17) C10—C11—H11 120.9
C3—C2—C1 136.24 (18) C13—C12—F1 118.8 (2)
C7—C2—C1 104.13 (17) C13—C12—C11 122.7 (2)
C2—C3—C4 118.74 (17) F1—C12—C11 118.4 (2)
C2—C3—H3 120.6 C12—C13—C14 118.3 (2)
C4—C3—H3 120.6 C12—C13—H13 120.9
C3—C4—C5 119.56 (17) C14—C13—H13 120.9
C3—C4—C9 120.27 (16) C13—C14—C9 121.5 (2)
C5—C4—C9 120.16 (16) C13—C14—H14 119.2
C6—C5—C4 122.28 (18) C9—C14—H14 119.2
C6—C5—H5 118.9 C8—C15—H15A 109.5
C4—C5—H5 118.9 C8—C15—H15B 109.5
C5—C6—C7 116.87 (19) H15A—C15—H15B 109.5
C5—C6—H6 121.6 C8—C15—H15C 109.5
C7—C6—H6 121.6 H15A—C15—H15C 109.5
O1—C7—C6 126.15 (19) H15B—C15—H15C 109.5
O1—C7—C2 110.93 (17) S1—C16—H16A 109.5
C6—C7—C2 122.92 (19) S1—C16—H16B 109.5
C1—C8—O1 110.93 (17) H16A—C16—H16B 109.5
C1—C8—C15 132.98 (19) S1—C16—H16C 109.5
O1—C8—C15 116.06 (18) H16A—C16—H16C 109.5
C10—C9—C14 117.57 (19) H16B—C16—H16C 109.5
O2—S1—C1—C8 −137.1 (2) C1—C2—C7—C6 −178.9 (2)
C16—S1—C1—C8 112.5 (2) C2—C1—C8—O1 0.9 (3)
O2—S1—C1—C2 39.1 (2) S1—C1—C8—O1 177.74 (16)
C16—S1—C1—C2 −71.2 (2) C2—C1—C8—C15 178.8 (3)
C8—C1—C2—C3 −179.4 (2) S1—C1—C8—C15 −4.3 (4)
S1—C1—C2—C3 3.8 (4) C7—O1—C8—C1 −0.5 (3)
C8—C1—C2—C7 −0.9 (3) C7—O1—C8—C15 −178.8 (2)
S1—C1—C2—C7 −177.67 (17) C3—C4—C9—C10 −37.6 (3)
C7—C2—C3—C4 −1.3 (3) C5—C4—C9—C10 143.6 (2)
C1—C2—C3—C4 177.1 (2) C3—C4—C9—C14 140.8 (2)
C2—C3—C4—C5 1.9 (3) C5—C4—C9—C14 −38.0 (3)
C2—C3—C4—C9 −176.79 (18) C14—C9—C10—C11 −0.6 (3)
C3—C4—C5—C6 −1.3 (4) C4—C9—C10—C11 177.9 (2)
C9—C4—C5—C6 177.4 (2) C9—C10—C11—C12 −0.7 (4)
C4—C5—C6—C7 0.0 (4) C10—C11—C12—C13 1.7 (4)
C8—O1—C7—C6 179.3 (3) C10—C11—C12—F1 −179.7 (2)
C8—O1—C7—C2 −0.2 (3) F1—C12—C13—C14 −179.8 (2)
C5—C6—C7—O1 −178.8 (2) C11—C12—C13—C14 −1.2 (4)
C5—C6—C7—C2 0.7 (4) C12—C13—C14—C9 −0.3 (4)
C3—C2—C7—O1 179.45 (19) C10—C9—C14—C13 1.1 (3)
C1—C2—C7—O1 0.6 (3) C4—C9—C14—C13 −177.4 (2)
C3—C2—C7—C6 −0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.95 2.36 3.245 (3) 156.
C16—H16B···O2ii 0.98 2.43 3.319 (3) 151.

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2019).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J., Lee, H. K., Son, B. W. & Lee, U. (2006). Acta Cryst. E62, o4480–o4481.
  6. Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc 43, 237–240.
  7. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2269. [DOI] [PMC free article] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
  9. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett 19, 2420–2428. [DOI] [PubMed]
  10. Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem 13, 4796–4805. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681103056X/qk2019sup1.cif

e-67-o2242-sup1.cif (27.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681103056X/qk2019Isup2.hkl

e-67-o2242-Isup2.hkl (170.6KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681103056X/qk2019Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES